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Chapter 1

Introduction

1.1 Jets

1.1.1 Jets in nature and industry

Scientific interest in free surface jets started at the beginning of the twentieth
century when A.M. Worthington published his famous work “A study of
splashes” [1]. His photographs of fluid impacts (see Fig. 1.1) revealed a
wealth of phenomena of unanticipated complexity that continue to pose
intriguing questions to today. In this thesis we will aim to answer some of
these questions.

The impact and jetting phenomena observed by Worthington are
ubiquitous in nature: One of the most familiar examples for us living in
the wet Northern European climate are raindrops falling into a puddle on
a rainy day. If examined closely (Fig. 1.2), a jet can be seen to erupt just
after a raindrop has impacted the surface of the puddle. Just before the
eruption of the jet a small bubble is enclosed [3], and as a matter of fact it
is not the impact of the drop itself, but the oscillations of this small bubble
that produces the sound so characteristic for rain. On large scale it is the
raindrops falling on the world oceans, that by the same process entrain
vast quantities of air and turn our seas into a major sink for carbon dioxide
from the atmosphere. On even larger scale, the planetary impact of a large
meteorite is governed by the same mechanisms and principles that govern
the impact of a simple drop of rain.
Many more examples of impact and jetting phenomena can be found in
Nature, but also in technical applications jetting has gained much impact
leading to many, nowadays standard, applications. Think only of inkjet
printers, in which droplets of ink are produced at high frequencies in
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Photographs made by A.M. Worthington et al [2] in 1897 of the
impact of a metal sphere into milk.

an extremely reproducible manner by a jetting procedure (see Fig. 1.3).
And then in a more industrial setting, there are the strong jets used
for water jet cutting. Droplet impact and the subsequent void collapse
are also a major source of noisy underwater sound [3] and a thorough
understanding is therefore crucial in sonar applications, which rely on the
precise recording of echoes and are greatly hampered by other sources
of sound. High speed water impacts and underwater cavity formation
are moreover of obvious relevance to military operations [4], where one
has to think of missiles and torpedoes entering the sea. In the context
of industrial applications, the detailed understanding of drop impact and
void formation is essential in pyrometallurgy [5, 6] and for the food industry.

In the near future it could even be small jets which intravenously inject
drugs into single cells. When a bubble collapses near a solid boundary, a
strong jet can be observed directed towards the boundary. As with all jets,
the focussing of momentum in the jet is tremendous, making it capable
of puncturing the membrane of a cell. If bubbles are introduced into
the bloodstream, they can be made to collapse by an externally applied
sound field. If a drug would be simultaneous introduced, the bubbles
which collapse close to a cell, will puncture the cells membrane with a jet
containing the drug. As the sound field can be focussed, such a method
would be localized and very useful in cancer treatments.
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Figure 1.2: The impact of a 6 mm droplet of water on a water surface.
Courtesy of S.M. van der Meer and T.H. van den Berg.

Figure 1.3: The jetting of ink droplets at high frequencies in an extremely
reproducible manner by an ink jet printer. Courtesy of J. de Jong.

1.1.2 The mechanism of jet formation

All the aforementioned jets in nature and industry emerge when a relatively
large amount of kinetic energy is imparted onto a small mass of liquid near
a free surface. The mechanisms which focus energy onto the small mass of
liquid occur in great variety. For instance in the case of the jet produced
by the printhead of an inkjet printer, a pressure wave in an open-ended
channel is focussed on the free surface at the nozzle. This mechanism
creates a jet which eventually pinches off [7–9] (cf. Figs. 1.3).

A different driving and focusing mechanism causes jetting in a glass of
champagne. Here, jetting occurs when carbon dioxide bubbles from the
bulk reach the surface and “pop”. When such a bubble of gas reaches the
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free surface, the liquid film on top of the bubble drains until it ruptures
and quickly retracts. This leaves an unstable cavity at the surface in which
the surface tension stresses focus on the base. These stresses are released
in the eruption of a liquid jet. Thus in the case of a glass of champagne,
the shape of the free surface provides the focussing for the jetting driven
by surface tension [10, 11]. Many more jet producing mechanisms are
known, like the jets produced by armor piercing weapons [12], for which
the focussing is purely geometrical and the driving is provided by an
explosive chemical reaction, or the jetting of bubbles collapsing near a
boundary [13] with the possible medical application mentioned before and
which are due to the asymmetry in the pressure driven collapse of the bubble.

On larger scales, where the influence of surface tension can be neglected,
a typical example of momentum focusing is the previously discussed
raindrop jet (Fig. 1.2). The impact of a droplet or object onto a fluid
surface causes a cavity to form, but in contrast to the champagne bubble,
surface tension is now irrelevant and the cavity collapses purely under the
influence of hydrostatic pressure. As the sides of the cavity collapse and
eventually collide upon each other, the moving fluid is released up and down
forming two vertical jets [1, 14–16]. Surprisingly, a similar void collapse
can even be observed in aerated sand [17], when a steel ball impacts a bed
of sand. After the ”hydrostatic” void collapse a jet of sand shoots up- and
downward [17, 18].

It is this type of jet formation processes that will be studied in this the-
sis. The jet formation after the impact of an object on water or sand is
one of the most spectacular examples of “free surface” flow and unravel-
ling the underlying mechanisms will shed light on all aforementioned jetting
phenomena, albeit in industry or nature.

1.2 Impact on water and sand

There are some apparent difficulties with the study of the impact of an
object on a free surface and the subsequent jetting. To name the most
challenging ones: (i) The impact event has a very short duration (≈ 100
ms). (ii) Throwing an object into a fluid is in general quite an errorprone
experiment: all but one of the systems parameters (the Froude number)
are response parameters and (iii) one has to take special precautions to
warrant reproducible results, especially for the impact experiments in sand.
We dealt with those problems in the following way.
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Figure 1.4: The controlled impact of a disk with a diameter of 60 mm onto
the water surface with a constant velocity of 1 m/s.

The short duration of the event is what made the initial study by
Worthington [1] a true technological feat. A typical experiment on the
scale performed by Worthington lasted less then 0.5 seconds, therefore
Worthington had to piece together the series of events by single photographs
of repeated fluid impacts. However, the advent of the high speed camera has
made it possible to make a continuous record of one impact event. This ex-
perimental tool is readily used throughout the thesis to study the impact in
detail and make a more quantitative comparison with proposed theoretical
descriptions and numerical experiments. In this work we make use of cam-
eras operating from a 1000 frames per second up to 50000 frames per second.

The difficulties with the reproducibility and controllability of the
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impact experiment is different for water impact and for sand. In the
case of the impact of a solid body on a water surface, one has to deal
not only with the body acting on the water, but also with the fluid
acting on the body itself. Due to this interaction, the path of the object
is thus dependent on shape, orientation, weight and impact velocity of
the object. These dependencies of the path make a systematic study
of the cavity dynamics hard, as the cavity is directly influenced by the
changing path. To circumvent this problem, an experimental setup will
be presented in which one has full control over the impacting object by
attaching it to an external motor. In this way, the response velocity of
the impacting body inside the liquid is effectively eliminated, as it now
becomes a control parameter of the system. As an example, Fig. 1.4 shows
a high speed recording of the controlled impact of a disk at constant velocity.

For impacts on sand, it is not so much the controllability of the path
of the impacting body which makes the experiments hard to interpret,
but rather the poorly defined initial state of the granular material. It is
therefore hard to achieve quantitatively reproducible results, presumably
due to the random nature of the force-chain-networks in the granular
material [19–21]. In order to prepare a well-defined initial state for our
experiments, we decompactify and homogenize the fine sand by blowing
air through it via a perforated bottom plate. The air is slowly turned off
before the experiments and the grains are left to settle in an extremely
loose packing (41% volume fraction) with the force-chains either broken
or substantially weakened. With this procedure the reproducibility of our
sand experiments is greatly improved.

The second challenge presented by impact experiments on sand is
the difficulty to look into the sand during the experiment. There are
some cutting edge technologies available today, but they all have signif-
icant disadvantages for the experiments at hand: They are either much
too slow (MRI or X–ray tomography [22–24]), lack accuracy (imaging
using radiation from β+-d-decay [25]), or ask for a significant reduction
of the size of the experiment (high speed X–ray imaging [26]). The
approach taken in this thesis is to observe the events above the sand
(e.g., the trajectory of the object inside the sand could be measured by
imaging a tail which was attached to the object) and relate these direct
observations to the mechanism of cavity collapse within the sand. This
connection is made by comparing them to the events and theoretical de-
scriptions for a cavity collapse in water and molecular dynamics simulations.
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Figure 1.5: Schematic representation of the model for the cavity collapse.
The flow surrounding the cavity (black arrows) is taken to be purely radial,
it is confined to the horizontal plane (blue plane).

1.3 Model of cavity collapse

The full analytical modelling of a cylindrical symmetric collapse of the
transient cavity presents the difficulty of a coupling between the free surface
and the flow surrounding the cavity. To tackle this difficulty we propose
the useful simplification of dividing the problem up into a set of quasi
two–dimensional problems as sketched in Fig. 1.5. If the axial component of
the flow is small compared to the horizontal flow components, we can take
the flow to be confined to the horizontal plane. In this way an equation for
the collapse of a two–dimensional bubble will suffice to describe the cavity
dynamics at an arbitrary depth.

To derive such an equation we will closely follow a derivation given in [27]
and [28]. The argument starts by writing the Euler equation in cylindrical
coordinates. This means that we assume the flow to be quasi two dimen-
sional at any depth along the cavity (cf. Fig. 1.5). The azimuthal compo-
nents can be ignored due to radial symmetry, leaving us with the following
equation,

∂vr

∂t
+ vr

∂vr

∂r
= −1

ρ

∂p

∂r
, (1.1)

where ρ denotes the density of the liquid. Here, the radial velocity com-
ponent vr and the pressure p are assumed to be a function of the radial
coordinate r only. The continuity equation and the boundary conditions on
the surface of the void lead to a second equation

rvr(r, t) = h(t)ḣ(t) , (1.2)
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Here, h(t) is the radius of the cavity and derivative ḣ(t) the velocity of the
cavity wall. Substituting Eq. (1.2) into Eq. (1.1) gives,

∂

∂t

(

hḣ

r

)

+
∂

∂r

(
1

2
v2
r +

p

ρ

)

= 0. (1.3)

We can integrate this equation over r from the cavity wall h to a reference
point h∞, where the flow is taken to be quiescent. h∞ is expected to be of
the order of a typical length scale of the system, such as the depth of the
cavity. Thus, strictly speaking, h∞ is a function of time and of the impact
parameters. We ignore this dependence here. Then the integration yields a
Rayleigh-like equation for the void radius at a fixed depth z,

[

d(hḣ)

dt

]

log
h

h∞
+

1

2
ḣ2 = −gz . (1.4)

Here, we have used the fact that the pressure driving the collapse of the
cavity is provided by the hydrostatic pressure p = −ρgz, where z denotes
the depth below the fluid surface. Thus, in Eq. (1.4) it is assumed that
the system is composed of non-interacting horizontal layers of fluid, with a
negligible vertical velocity component.

1.4 Guide through the chapters

The prime objective of this thesis is to study the dynamics of the ”free
surface” for sand and fluids after the impact of a solid body. In both cases,
it is the hydrostatically driven collapse of the free surface which gives rise
to the focussing of the flow and the subsequent singularity from which the
upwards jet and downwards jet erupt.

In Chapter 2, we show that the impact of a steel ball on very loose
and fine sand bears a striking resemblance to the impact of an object on a
liquid. To investigate the mechanism of jet creation in the sand, we employ
molecular dynamics simulations, quasi two dimensional experiments, and
a continuum description based on the Euler equation to describe the void
dynamics [17].
The preparation of the sand, to obtain a well defined initial state for the
experiments, greatly reduces the yield stress of the sand and puts our
experiments in the same spot in parameter space as large meteorite impacts
and give them possible relevance in a geophysical context.
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This procedure to prepare the sand, weakens the force chains in the
sand to such a degree that the sand can no longer support any weight.
This extremely low yield stress state of the sand, or ”dry quick sand” as
we name it, is discussed in Chapter 3. The dry quick sand is probed by
investigating an object penetrating the sand. Surprisingly, the observed
phenomena are accurately captured by a simple Coulumb friction model [29].

In Chapter 4 we will address the influence of the ambient air on the
experiment. It is found that when the ambient pressure is reduced below a
certain threshold, also the height of the sand jet is considerably reduced.
We find that surprisingly this reduction is not due to an alteration of the
jet formation mechanism, but it is due to the way the sphere penetrates
into the sand. The altered path of the ball changes the depth at which the
singularity of the hydrostatic collapse (Chapter 4) occurs and a shallower
singularity creates a smaller jet [30].

In Chapter 5, we change from sand to water impacts. We impact a disk
on a water surface and investigate the final stages of the hydrostatically
driven collapse of the free surface. Where pinch-offs of, e.g., liquid drops are
known to exhibit universal behavior close to singularity, in our experiment
the inertial collapse of the gas filled neck is found to strongly depend on
the initial conditions set by the impacting disk [15].

The initial conditions for the collapsing neck are set by the shape of
the cavity. This cavity shape is examined in great detail in Chapter 6.
Using the same theoretical approach as Chapter 2, many aspects of the free
surface dynamics are captured, increasingly so, if the cavity shape becomes
more cylindrical. This Chapter 6 concludes our discussion of jets produced
by the hydrodynamic collapse of the surface void created by the impact of
an object on sand and liquid [31].

We also investigated the cavity collapse after the submerging of a
cylinder, which turned out to be remarkably different from the disk impact.
For the cylinder capillary effects are found to have a lasting influence on
the cavity development and to strongly influence the depth of the cavity
closure. This influence of capillary effects is absent for the impact of a disk.
This study will however not be presented as part of this thesis, but will be
reported separately [32].

In Chapter 7 we will discuss the formation of a jet of a different type,
namely when water rushes upwards to fill an initially empty vertical tube
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partially immersed in a bath of fluid, under specific conditions a jet is seen
to perturb from the water surface. In this chapter, we see that this jet also
arises from a focussing of the flow, like the jet in water and sand after the
impact of an object, however in this case the flow focussing is provided by
the geometry of the tube [33].

The work presented in this thesis is a close combination of laboratory
experiments, numerical calculations (molecular dynamics simulations for the
sand and boundary integral simulations for the fluids), and theoretical anal-
ysis. As seen again and again, all three are found to agree very well, shedding
their light on the process of jet creation in both water and sand.
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Chapter 2

Impact on soft sand: Void

collapse and jet formation ‡

Very fine sand is prepared in a well defined and fully decompactified state
by letting gas bubble through it. After turning off the gas stream, a steel
ball is dropped on the sand. The series of events in the experiments and
corresponding discrete particle simulations is as follows: On impact of
the ball, sand is blown away in all directions (“splash”) and an impact
crater forms. When this cavity collapses, a granular jet emerges and is
driven straight into the air. A second jet goes downwards into the air
bubble entrained during the process, thus pushing surface material deep
into the ground. The air bubble rises slowly towards the surface, causing a
granular eruption. In addition to the experiments and the discrete particle
simulations we present a simple continuum theory to account for the void
collapse leading to the formation of the upward and downward jets.

2.1 Experiment

According to Shoemaker, the “impact of solid bodies is the most fun-
damental process that has taken place on the terrestrial planets” [1], as
they shape the surfaces of all solar system bodies. A lot of information

‡Published as: Detlef Lohse, Raymond Bergmann, Rene Mikkelsen, Christiaan Zeilstra,
Devaraj van der Meer, Michel Versluis, Ko van der Weele, Martin van der Hoef, and Hans
Kuipers, Impact on soft sand: Void collapse and jet formation, Phys. Rev. Lett. 93,
198003 (2004).
The experiments and void collapse analysis described in this chapter are to be considered
part of this thesis. The particle simulations were performed by Christiaan Zeilstra.
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14 CHAPTER 2. IMPACT ON SOFT SAND

on this process has been extracted from remote observations of impact
craters on planetary surfaces. However, the nature of the geophysical
impact events is that they are non-reproducible. Moreover, their scale is
enormous and direct observations are not possible. On the other hand,
S. Thoroddsen and A. Shen did small scale experiments by letting a
lead sphere fall on monodisperse spherical glass beads [2]. They found a
jet emerging from the impact site. Similar jets are long known when a
ball or a fluid droplet impacts on a liquid surface [3–7]. We did similar
experiments as in [2], but now on extremely fine sand (average grain-size
of about 40 µm; grains are non-spherical) [8]. We found it hard to achieve
quantitatively reproducible results, presumably due to the random nature
of the force-chain-networks in the granular material [9–12]. Therefore,
in order to prepare a well-defined initial state, we decompactify and
homogenize the fine sand by blowing air through it via a perforated bottom
plate. The height of the sand bed above the bottom plate is typically 25-40
cm. The air is slowly turned off before the experiments and the grains are
left to settle in an extremely loose packing (41% volume fraction) with
the force-chains either broken or substantially weakened. We call this a
“fluid-like” state. Impact events on this well-prepared fine sand will be
gravity-dominated. We let a steel ball (radius R0 = 1.25 cm) fall from
various heights (up to 1.5 m) onto the sand and observe the dynamics
of the sand with a digital high-speed camera (up to 2000 frames per second).

The series of visible events is as follows (see figure 2.1): First, the ball
vanishes in the sand and a crown-like splash is created. Inhomogeneities de-
velop in the crown, due to the inelastic particle-particle interaction (figure
2.1, frames 3-5). Then, after a while, a jet shoots out of the sand at the
position of impact. In all our experiments the jet height exceeds the release
height of the ball, see figure 2.4a. While the upper part of the jet is still go-
ing upwards, in the lower parts the inelastic particle-particle collisions lead
to density inhomogeneities in the jet (figure 2.1, frames 7-8). These inho-
mogeneities resemble those of the surface tension driven Rayleigh-instability
of a water jet, even though there is no surface tension in granular matter.
Finally, after about half a second, a granular eruption is seen at the position
of impact, resembling a volcano (figure 2.1, frames 8-9). The collapsing jet
first leaves a central peak in the crater∗, but the granular eruption violently
erases this peak.

∗Similar peaks are observed in many craters of the terrestrial planets [13, 14].
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Figure 2.1: Jet formation after the impact (v0 = 2.43 m/s) of a steel ball of
R0 = 1.25 cm on loose very fine sand. The jet in this experiment exceeds the
release height of the ball. Frames 2-4: splash; frames 5-6: a jet emerges; frame 7:
clustering within the jet; frames 8-9: granular eruption at the surface.
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2.2 Void collapse and jet formation

How does the jet form? To find out what is going on below the surface
of the sand, we (i) performed direct numerical simulations, (ii) redid
the experiments in two dimensions, meaning that we replaced the ball
by a cylinder (with axis parallel to the surface and orthogonal to the
side plates) which we let fall into a bed of sand between two transpar-
ent plates, and (iii) employed the analogy to jet formation in fluids [3–7, 15].

(i) In the discrete particle simulations, the sand particles are modeled
as spheres which interact via inelastic “soft-sphere” collision rules. The
interaction of the particles with the surrounding air is included via empirical
drag force relations [16]. Since the maximum number of particles that can
be simulated is presently of the order of one million, we can perform only
quasi-two-dimensional simulations, where the thickness of the sand bed
between the parallel plates is eight grains†. Altogether, the calculation
includes N= 1.3 million homogeneous beads of density 1000 kg/m3 and
diameter 500 µm (i.e., approximately a factor 10 larger than in experiment)
in a container of 24 cm × 0.4 cm ground area and a sand bed height of about
17 cm. The beads are pre-fluidized with air, just as in the experiments,
and then a 1.5cm diameter ball of density 3500 kg/m3 is dropped onto
the beads with an impact velocity of 2 m/s. The series of events can be
seen in figure 2.2, revealing the jet formation process invisible in figure 2.1:
The impacting ball creates a void which is then pressed together through
the “hydrostatic” pressure from the side which nonlinearly increases with
depth [17]. At small depth the ball passes early, meaning an early start of
the void collapse, which however is weak due to the small “hydrostatic”
pressure. Conversely, at larger depth the collapse of the void begins later,
but is stronger due to the larger “hydrostatic” pressure. Somewhere in the
middle the collapse is finished first, and the void walls hit each other. It is
this singularity which leads to the formation of two jets: One upwards and
one downwards into an air bubble which was entrained in the sand by the
void collapse. The falling jet often leaves a central peak in the crater (which
in our 3D experiments with the fine, decompactified sand is subsequently
erased again by the granular eruption). Note that the jet in the discrete
particle simulations is much less pronounced than in experiment. First,
because the beads in the simulations are much larger than the sand grains
in the experiment, i.e. the sand bed is less fluid-like and allows for less fine
structure. Second, the singularity due to the focussing along the axis of

†The 3D simulations we did are too strongly affected by finite size effects. Nevertheless,
also for these simulations a jet emerges.
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Figure 2.2: Cut through the quasi-2D discrete particle simulation. Frames
1-3: the impact of the disk on the particles; Frames 4-6: the collapse of the
void; Frame 7: the upward jet (which is less pronounced than in the 3D
experiments).

symmetry is weaker in 2D and quasi-2D experiments or simulations than in
3D, and the jet takes the form of a sheet. – We will present a quantitative
comparison of experimental and numerical impact events on 500 µm beads
elsewhere.

(ii) We performed such 2D jet formation experiments, by letting a
cylinder fall into decompactified sand between two transparent plates, and
observing the jet formation process from the side [8]. These experiments
confirm the above sketched series of events. Again, the jet is less pronounced
than in the 3D experiments. The entrained air bubble slowly rises in these
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Figure 2.3: Cross-section of the 3D-void collapse following from our
Rayleigh-type model, for the same impact velocity and ball radius as in
figure 1. The void is pressed together by the “hydrostatic” pressure from
the side, leading to a singularity and an upward and downward jet.

experiments, finally leading to a granular eruption at the surface, just as
observed in 3D.

(iii) The same series of events is also found after an analogous impact
of a steel ball or a falling disk on water [3–7, 15, 18]. We will employ this
analogy in order to set up a “minimal” continuum mechanical model, in
order to work out the essentials of the void collapse.

First, the delay curve z(t) of the ball in the sand can be obtained from
a simple force balance model involving drag, gravity, and added mass. It
describes the experimental results obtained for a falling ball equipped with
a thin stiff tail, which allows for easy depth measurements [19]. The delay
curve z(t) of the ball is inverted to obtain tpass(z), the time when the ball
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Figure 2.4: (a) Jet height as a function of release height of the ball in our
experiments (solid bullets with error bars) and in those of ref. [2] (for spheres
in a granulat of different diameter: ds = 0.08 mm (pluses), ds = 0.118
mm (triangles), ds = 0.176 mm (solid squares)). The jets of ref. [2] never
reach the release height, because the granulate is less fine and much less
decompactified. In our experiments jets are produced even at zero impact
height [19] and there is no scaling relation as in ref. [2]. (b) Sketch of the
void collapse. When the accelerated sand grains from the sidewalls of the
cylindrical cavity collide on the axis of the cavity, two jets are formed: One
downward into the entrained air bubble formed above the sphere, and one
upward straight into the air.

passes the layer of sand at depth z. This sets the initial conditions for the
two-dimensional collapse of the void at this depth, namely R(z, tpass) = R0

and Ṙ(z, tpass) = 0. Here, R(z, t) is the time and depth dependent radius
of the void, see figure 2.4b.

Next, the collapse of the void formed by the ball has to be described. It
is driven by the (“hydrostatic”) sand pressure p(z) at depth z. For small z
the pressure simply is p(z) = ρsgz, for larger z it saturates [17]. Here, ρs

is the sand density, assumed to be constant. If we neglect the dissipative
processes both between the different layers of sand and between the sand
grains in one layer, the dynamics for fixed depth z is determined by the
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Euler equation,

ρs(∂tv(r, t) + v(r, t)∂rv(r, t)) = −∂rp(r, t). (2.1)

Here, v(r, t) is the velocity field in the sand. With continuity ∂r(rv(r, t)) = 0,
and with the boundary conditions v(R(t), t) = Ṙ(t) at the void’s wall and
v(R∞, t) = 0 far away from the void, one obtains a Rayleigh-type [20, 21]
ordinary differential equation for each R(z, t), namely (cf. Section 1.3)

(RR̈ + Ṙ2) log
R

R∞
+

1

2
Ṙ2 =

1

ρs
p(z) = gz. (2.2)

The radius R∞ is of the order of the system size, but the results only weakly
(logarithmically) depend on this parameter. The dynamics following from
this Rayleigh-type model is shown in figure 2.3, resembling the void collapse
in the discrete particle simulations figure 2.2, in the 2D experiments [8],
in experimental work on the void collapse in transparent fluids [3–7, 15],
in boundary integral simulations of the complete hydrodynamical equa-
tions [18], and therefore presumably also in the 3D experiments in sand
shown in figure 2.1. Just before and at the singularity (R(t) = 0 and
diverging velocity), the dynamics is determined by RR̈ + Ṙ2 = 0, which has
the solution R(t) ∼ (ts − t)1/2, where ts is the time of the singularity. The
velocity therefore has a square-root divergence Ṙ(t) ∼ (ts − t)−1/2.

Having shown that the void collapse is driven by “hydrostatic” pressure,
we now can deduce scaling arguments [22], for the limiting case of large
impact velocity v0, which is the relevant one in the geophysical context.
The time up to void collapse in depth z is the sum of the time z/v0 it takes
the ball to get there and the collapse time itself, which scales as ∼ R0/

√
gz.

The depth zc where the walls of the void first touch (i.e., the position of
the singularity) can be obtained from minimizing this sum with respect
to z, resulting in zc/R0 ∼ Fr1/3, where Fr = v2

0/(gR0) is the Froude
number. From this one obtains that the time of the collapse tc scales as
tc ∼ (R0/v0)Fr1/3 ∼

√

R0/gFr−1/6 [22]. For large v0 these scaling laws are
consistent both with our continuum model.

We now discuss the role of the ambient air and the ambient pressure for
the evolution of the jet: (i) For (3D) experiments with very high impact
velocities we observed that after the splash the crown goes inwards rather
than outwards, due to the pressure reduction behind the fast projectile
(Bernoulli’s law). The crown in fact can fully close and the jet then hits the
closed crown, leading to an explosion-like collision which spreads material



2.3. CONCLUSION 21

all over the place. (ii) In impact experiments on very fine and loose sand but
with strongly reduced ambient pressure the jet in fact is less pronounced
than with ambient pressure [23]. For larger particles (500 µm) we redid
above discrete particle simulations, but now reduced the air pressure to
zero (vacuum) after fluidization. These simulations give very similar results
for the jet formation compared to experiments and simulations under the
same conditions at atmospheric pressure. More research on the role of air
in loose fine granular material clearly is required.

2.3 Conclusion

We conclude the chapter with speculations on possible implications of our
findings on the impact mechanism within the geophysical context [13, 24–28].
In general, impacts can be described using two dimensionless parameters:
the Froude number (Fr = V 2/gR) and the (inverse) Newton number
(Nt−1 = ρV 2/Y , where ρ, V , and R are the density, velocity, and radius
of the impactor respectively and Y is the yield stress of the target [27].
Although the absolute energy scales in our experiment are of course
very different as compared to geophysical events, the relative scales are
comparable: very large-scale planetary impacts (Y ≈ 10 kbar, R ≈ 100
km, and V ≈ 10 km/s) and our experiments (Y ≈ 10 Pa, R ≈ 1 cm,
and V ≈ 3 m/s) both lead to Froude and Newton numbers of the same
order: Fr ≈ 102 and Nt−1 ≈ 103. At this point we would like to caution
the reader to directly translate or upscale the results of our laboratory
experiments to the geophysical scales as in addition to the aforementioned
difference in absolute energy scales, lack of reproducibility of the details
typify geophysical events. Nonetheless, we believe that the following
speculations may stimulate discussions in a geophysical context: (i) After
the impact of a solid body on a planet, it may be the upward jet and not
the splash which is the dominant source of planetary material transferred
into space [25]. Similarly, an oblique jet resulting from an oblique impact
(not shown here; in that case the jet goes backwards !) allows for an
enhanced sidewards transport of material, as compared to the splash.
(ii) The collapsing jet may contribute to the central peak often found in
impact craters [13, 14]. (iii) The downward jet will considerably change the
layering of the sediments underneath a crater, as it provides a mechanism
how surface material can be transported deep into the ground. In addition,
a granular eruption will rearrange the sediment. Our suggested mech-
anism may shed new light on the sediment layering data found under-
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neath the Chicxulub crater, which is a source of major controversy [29–32].
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Chapter 3

Creating a dry variety of

quicksand ‡

Sand can normally support a weight by relying on internal force chains [1–3].
Here we weaken this force-chain structure in very fine sand by allowing air
to flow through it: we find that the sand can then no longer support weight,
even when the air is turned off and the bed has settled a ball sinks into the
sand to a depth of about five diameters. The final depth of the ball scales
linearly with its mass and, above a threshold mass, a jet is formed that shoots
sand violently into the air.

3.1 Experiment

We allowed air to flow through very fine sand (typical grain diameter was
about 40 µm), which was sitting in a container with a perforated base. The
air stream was turned off before the start of the experiment and the sand
allowed to settle (Section 3.3). The packing fraction of this sand was only
41%, compared with 55-60% for untreated sand. We call this fragile state
of sand ’dry quicksand’ (not to be confused with normal quicksand, which
is a mixture of sand, clay and water).

A ping-pong ball of radius R = 2.0 cm, partly filled with bronze grains,
was suspended above the treated sand so that it was just touching the
surface. To release the ball without introducing any vibration, the thin rope
supporting the ball was burned causing the ball to sink instantaneously

‡Published as: Detlef Lohse, Remco Rauhé, Raymond Bergmann, Devaraj van der
Meer, Creating a dry variety of quicksand, Nature 432, 689 (2004), including Supplemen-
tary Material.
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into the sand (Fig. 3.1). Objects often make a splash when they hit
sand [4, 5]; in this case there was no splash, as expected, but a straight jet
of sand shot violently into the air after about 100 ms [4, 5]. The singularity
leading to this jet formation has already been described in Chapter 2.

Figure 3.1: Snapshots of the sinking-ball experiment. At time t = 0 ms, the
ball (mass m = 133 g) is released and immediately starts to sink into the
sand; at t ≈ 130 ms, a sand jet emerges, which reaches its final height at
t ≈ 180 ms. After about 600 ms, the trapped air bubble reaches the surface.

In experiments using a ball that has a stiff, almost mass-less tail,
which allows for tracking of the sinking depth as a function of time, we
find that the ball reaches a final depth of zfinal = 22.4 cm (Fig. 3.2).
This corresponds to more than five times its diameter. We investigated
how this phenomenon is affected by the mass of the ball and found that
the final depth reached by the ball increases linearly with its mass: that
is, zfinal ∝ m. A visible jet only develops beyond a threshold mass of
mthres = 28.5 g (Fig. 3.2).
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Figure 3.2: The jet height, hjet (red circles), and the final depth of the ball,
zfinal (blue diamonds), as functions of the ball mass, m. Blue dashed line,
linear fit with slope 2g/κ; red dotted line, fit hjet ∝ (m−mthres)

1.0. The ball
is released from rest from the surface of the sand (Fig. 3.1). Inset, depth of
the ball, z, as function of time, t, for a ball of mass 148 g (experiment: blue
curve; model: red curve).

3.2 A Coulomb drag model

We developed a simple force model to describe the dynamics of the ball
in the sand and the parameter dependence of the final depth. The ball is
accelerated by gravity and at the same time experiences a drag force, FD,
from the sand grains. For simplicity, we assume a Coulomb drag due to
the normal forces from the side, which increases linearly with the depth z
(ref. [6]); pressure saturation due to sidewall support (Rayleigh-Janssen law)
occurs only at much greater depth. We therefore have FD = −κz, where κ
is a constant; note that FD does not depend on velocity. The equation of
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motion is thus
(m + mA)z̈ = mg − κz , (3.1)

where mA is the ’added mass’, meaning the mass of sand that is accelerated
along with the moving ball. Equation (3.1) has to be supplemented by
the initial conditions z(0) = 0 and ż(0) = 0. Integration of equation (3.1)
immediately gives the final depth, zfinal = 2mg/κ; that is, depth depends
linearly on the mass. This agrees with the experimental findings shown in
Fig. 3.2, from which we can read off κ = (13.3±0.5) N/m. The full solution
of equation (3.1) is

z(t) =
1

2
zfinal(1 − cos(ωt)) , (3.2)

for 0 ≤ t ≤ π/ω, where ω =
√

κ/(m + mA). Equation (3.2) describes the
dynamics extremely well (Fig. 3.2, inset). From the fitted ω, we obtain mA

as zero, within measurement precision.

In nature, dry quicksands may evolve from the sedimentation of very
fine sand after it has been blown into the air and, if large enough, might be
a threat to humans. Indeed, reports that travellers and whole vehicles have
been swallowed instantly [7, 8] may even turn out to be credible in the light
of our results.

3.3 Some further experimental details

The experiments described in the previous sections are performed in a
50 cm high container with a perforated bottom of 15.1 × 15.3 cm2. The
box is about half filled with very fine sand with an average diameter of
40 µm through which we then let air flow. Before the experiments we
turn off the air stream and let the sand settle. The bed prepared in
this way has a density of 897 kg/m3, determined by measuring its total
mass and the filling height after decompactification. With a quartz den-
sity (SiO2) of 2200 kg/m3 this corresponds to a packing density of only 41%.

A hollow (‘ping-pong’) ball of radius R = 2.0 cm, of which the mass
can be varied by filling in bronze particles through a small hole on the top,
is suspended above and just touching the surface of the sand. Either the
position of ball is measured as a function of time (using a light but stiff rod
attached to the top), or the emergence of the jet is imaged. For this we use
a high speed camera at frame-rates of 1000 Hz and 2000 Hz.
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When passing the surface the jet of figure 3.1 has v = 3 m/s tip velocity
and eventually reaches a height of hjet = 25 cm. A striking observation of
figure 3.2 seems to be that the height of the jet is of the same order as the
penetration depth of the sphere. This however turns out to be circumstan-
tial: The jet height depends not only on the degree of decompactification
and the impact velocity, but also on the size ratio of the impactor and the
sand grains and even on the ambient gas pressure [4, 5, 9, 10].

We have performed experiments with differently shaped objects and
with impact velocities larger than zero. In experiments with a disk released
at the surface we found good agreement with our model, provided that
we include a non-zero added mass in Eq. (3.1). In impact experiments
with increasing impact velocity we find that the quality of the fit of our
simple model to the experimental data deteriorates more and more. These
experiments will be discussed elsewhere.

In the experiments reported in the present chapter we find the drag to
be independent of velocity. This is consistent with Wieghardt [11], who
reported an approximately constant drag for velocities up to 1 m/s. Indeed,
also the velocities in the sinking experiments described in this chapter never
exceed g

√

m/κ ≈ 1.0 m/s [cf. Eq. (3.2)]. Also Chehata et al. [12] found
a velocity-independent drag in vertical chute flow in the same low velocity
regime.

3.4 Extension of the model

As indicated, the experiments were carried out starting from a situation
with the ball positioned on top of the bed. In the model we approximate
this initial condition with z=0 at t=0, neglecting the finite radius of the
ball. One may argue that an initially half-immersed ball would be a more
appropriate initial condition for our model.

However, from an experimental point of view, a ball only touching the
bed of sand is very much to be favored since the ball can be positioned
after the fluidization procedure, leaving the bed completely undisturbed.
A half-immersed ball can only be realized by either pushing the ball into
the bed (thus compactifying the region directly below the sphere) or by
fluidizing while the ball has already been put into its position. This will
cause stagnation and deflection of the air flow around the sphere and create
uncontrollable inhomogeneities in the bed.
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Figure 3.3: Comparison of the approximate model presented in the paper
(blue curves) and the refined model (red curves) for κ = 13.3 N/m and
sphere radius R = 0.02 m. (a) The final depth zfinal reached by the sphere
as a function of mass m. (b) Trajectory of a ball of mass m = 148 g.
Note that the two curves practically coincide. The horizontal dotted line
corresponds to the radius of the ball.

From a theoretical point of view, we can easily implement the finite
radius correction into our model. We assume that between z = 0 and z = R
the drag force is reduced as compared to the approximate model, reflecting
that in the beginning of the trajectory the ball is only partly immersed. E.g.,
we assume that only the immersed surface area of the sphere experiences
the Coulomb drag force, leading to

FD =

{
−κz2/R for z < R
−κz for z ≥ R

(3.3)

Using the appropriate boundary conditions [z(0) = 0, ż(0) = 0], the equation
of motion mz̈ = FD + mg can be integrated with respect to the spatial
coordinate. The final depth the ball reaches is determined by the condition
ż(zfinal) = 0 or

mgzfinal = −
∫ zfinal

0
FD dz, (3.4)

which is readily evaluated using eq. (3.3). In figure 3.3a the mass-dependence
of zfinal for the approximate and the refined model is compared. For small
masses, i.e., those that lead to a final depth of the order of the ball radius
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R, seizable differences are expected and found, but for larger masses the two
models quickly converge to the proportionality law presented in Section 3.2.

In figure 3.3b the refined equations of motion are integrated over time
for the same mass used for the plot in the inset of figure 3.2. The two
models give practically indistinguishable results. Physically, the reason
for this is that for larger masses the initial force acting on the particle is
dominated by gravity; therefore variations of the precise form of the drag
force during the very first stage of the movement do not significantly alter
the trajectory followed by the sphere.
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Chapter 4

The role of air in granular jet

formation‡

A steel ball impacting on a bed of very loose, fine sand results in a surpris-
ingly vigorous jet which shoots out from the surface of the sand [1]. When
the ambient pressure is reduced, the jet is found to be less vigorous [2]. We
find that the ambient pressure also affects the penetration depth of the ball
and show that it is this change in penetration which determines the height
of the jet. The observations are explained combining a Coulomb drag force
model with a Rayleigh-type equation for the collapse of the void created by
the ball. The origin of the deeper penetration under normal ambient pressure
is found to lie in the extra sand fluidization caused by the air flow induced
by the falling steel ball.

4.1 Introduction

When an object impacts on a bed of fine, loose grains, it is quickly engulfed
and a surprisingly vigorous jet shoots out from the surface of the sand [1–5],
similar to what happens in a liquid [6–10]. The understanding of this
phenomenon comprises two different aspects: One is the dynamics of the
object while moving through the granular material [5, 11–19]; the other is
the mechanism by which the jet is formed when the void created by the
object collapses under the action of gravity [1, 2, 4].

‡See also: Gabriel Caballero, Raymond Bergmann, Devaraj van der Meer, Andrea
Prosperetti, and Detlef Lohse, The role of air in granular jet formation, submitted to
Phys. Rev. Lett.
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Royer et al. [2] found a granular jet created at reduced ambient
pressure to be smaller than at atmospheric pressure, highlighting the
relevant role that interstitial air plays in systems with very small grains
(< 100µm) [20–24]. They also observed that at intermediate pressures,
the shape of the jet consisted of a small thin structure on top of a much
thicker one. By studying the effect of the pressure on the maximum height
reached by the thin and the thick part of the jet, combined with high speed
X-ray radiography, they concluded that the thin jet was caused solely by
the collapse of the cavity while the thick jet was driven by a pressurized air
pocket trapped in the sand.

In this chapter we present experiments where we found that the pressure-
dependent reduction of the jet size goes hand in hand with a reduction of
the final depth reached by the ball. We propose that it is this change in
penetration depth which alters the size of the jet. Moreover, we show that
the reduction of the jet size with the pressure is consistent with a mechanism
of formation of the jet governed by the gravitational collapse of the void as
proposed in [1]. Finally, we discuss experiments which suggest that the
flow of air around the moving ball is responsible for the influence that the
ambient pressure has on the drag force that the ball experiences inside the
sand.

4.2 Impact experiment at reduced ambient pres-

sure

For the experiments presented here we adapted the setup used in [1, 5] to
allow for the evacuation of air. It consists of a deep bed (between 25 and
40 cm) of non-spherical sand grains with a mean size of about 40 µm. The
cross section of the granular bed is a square of 14 cm per side. Before
each impact experiment, air was blown through the bed from the bottom in
order to decompactify and homogenize the sand. Then the air supply was
slowly cut off and the bed was allowed to gently settle into a static, loose
(41% volume fraction), weakened state. The container was subsequently
sealed off and the air was slowly pumped out simultaneously from above
and below the bed, lowering the pressure in the container at a rate of 5
mbar per second. We verified that there was no difference in measurements
done when the evacuation of air was done at slower rates. When the desired
pressure was attained, the valves were closed and a steel ball of diameter
D = 1.6 cm was released from different heights.
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A high speed camera filming from one side through the transparent
walls of the container allowed to measure the maximum height h reached
by the tip of the jet. The complete trajectory z(t) of the ball inside the
sand, from the moment of impact until its final depth zfinal, was measured
by attaching a thin thread with markers to the ball, which was kept tense
during the process by running it through a small fastener. Because of the
friction in this fastener, the measured effective acceleration of the falling ball
before impact was about 10% smaller than gravity. In the following, each
experimental point plotted is the average of three independent realizations,
and the error bar is the corresponding standard deviation.

The maximum height of the jet h and the final penetration depth of the
ball zfinal are plotted as a function of the ambient pressure p in Fig. 4.1(a)
and (b). In these plots four different impact velocities vo were used, which
are expressed in terms of the Froude number, defined as Fr ≡ 2v2

o/gD, where
g is the acceleration of gravity. Both h and zfinal are found to first increase
with increasing pressure, astonishingly revealing a strong influence of the
ambient pressure on the friction the ball experiences inside the sand. For
pressures higher than p ≈ 400 mbar the jet height saturates, quite unlike the
penetration depth which has a more monotonic behavior. By plotting the jet
height versus the final depth [Fig. 4.1(c)] two distinct regimes are revealed:
(i) for low pressures, h increases more or less linearly with zfinal, and (ii)
for higher p the jet height saturates to a (Froude-dependent) constant value,
whereas the penetration depth continues to increase.
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Figure 4.1: (a) Maximum height of the jet h, and (b) final depth of the ball zfinal,
as a function of the ambient pressure p for different Froude numbers: Fr = 7(J),
18(?), 35(�), and 132(•). D = 1.6 cm is the diameter of the impacting ball. (c)
Maximum height h of the jet versus the penetration depth zfinal of the ball. Two
regimes are clearly distinguishable: The first at low ambient pressure, where the
jet height h increases linearly with the penetration depth zfinal, independent of the
Froude number, and the second at high pressures, where the jet height h saturates
to a value independent of pressure and penetration depth. The lines in this plot
are guides to the eye.
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4.3 Trajectory of the ball

In order to explain the above observations we now turn to the complete
trajectories z(t) of the ball at four different pressures depicted in Fig. 4.2(a).
The vertical dotted line marks the closure time tc of the cavity at p = 600
mbar, which we were able to measure by a top-view, high-speed recording
of the impact and cavity collapse∗. The tangents of the trajectories at
the moment of impact (t = 0) are identical, which reflects the fact that
the impact velocity of the ball was the same in all the four experiments
(Fr = 35), but for t > 0 they start to diverge. A suitable measure for this
divergence is the location zi of the ball at t = tc, which can be determined
from the trajectories [Fig. 4.2(b)]. Clearly, for higher pressures (p & 400
mbar) the values of zi differ very little, reflecting the fact that trajectories
are almost identical up to the time when the cavity closes. Therefore we
infer that the cavity dynamics, the closure depth, and consequently also
the jet formation process are the same. This explains why the jet height
becomes constant for higher pressures: The impact velocity v0 determines
the jet height in this first regime†.

On the other hand at low pressures (p < 400 mbar), the trajectories
deviate substantially during the interval 0 ≤ t ≤ tc and therefore eventually
zfinal becomes the determining factor for the closure depth and consequently
also for the jet height. So in this second regime the jet height h will become
independent of the impact velocity and will be a function of zfinal only,
completely in agreement with our observations in Fig. 4.1(c).

4.4 Model of void creation and collapse

To describe the creation and subsequent collapse of the impact cavity we
combine the drag force model for the impacting ball of [5] and the collapse
model introduced in [1]. The drag force model of [5] is based on a drag force
of the Coulomb form Fd = −κz (cf. Chapter 3), where z is the depth of the
ball and κ is a constant. This leads to the equation of motion mz̈ = mg−κz,

∗For Fr = 35 we find a plateau at tc = 52 ms at p = 600 mbar, which at lower pressures
goes down to 42 ms with a similar trend as the closure depth in Fig 4.2(b). At p = 1
bar, the splash that is being dragged into the cavity obscures the observation of the cavity
closure.

†The fact that the entrained air bubble will be dragged along with the ball at higher
pressures, together with the relatively large pressure drop in the wake of the ball, could
explain the slight decrease of the jet height for p & 400 mbar as observed in Fig. 4.1(a)
and (c).
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Figure 4.2: (a) Experimental (thick lines) trajectories of the ball in the sand
compared to the prediction of the drag force model (thin lines) for four different
pressures at Fr = 35. The vertical dotted line indicates the measured closure time
tc of the cavity. The black dots mark the location zi of the ball at the time of
closure. The blue star indicates the calculated closure time tc and closure depth zc

using the model, the closure time is found to hardly depend upon the pressure. (b)
Location of the ball at closure zi from the top Figure (red squares, left axis) and
the closure depth zc obtained from the model (blue diamonds, right axis), both as
a function of pressure. In order to permit a comparison between the two quantities,
we plotted them on different vertical scales.

with intial conditions z(0) = 0 and ż(0) = v0, which is readily solved to
obtain the trajectory of the ball in the sand

z(t) =
gm

κ

[√

FrDκ

2gm
sin

(√
κ

m
t

)

− cos

(√
κ

m
t

)

+ 1

]

, (4.1)

for 0 ≤ t ≤ tstop, where tstop is defined by the condition ż(tstop) = 0.
Inserting tstop into the above equation gives the final depth the ball reaches
as zfinal = (gm/κ)[1 + (1 + κDFr/2gm)]. In [5] it was shown that this
model leads to an accurate description of the trajectory of the ball in
our loose, fine sand at atmospheric pressure and zero impact velocity.
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To evaluate how the model performs under v0 > 0 and at lower ambient
pressures, in Fig. 4.3(a) we compare the measured zfinal as a function
of the Froude number to the prediction of the model at three different
pressures. The solid lines in Fig. 4.3(a) are the best fits of the equation
for zfinal to the experimental data, where the only free parameter is
the drag force coefficient κ. The agreement between the model and the
experiments is very good for low and intermediate Froude numbers, but
they differ when Fr & 80. A plausible explanation of such behavior is that
some velocity-dependent term needs to be included in the drag force on
the ball [12–19], whose relative weight would increase with Fr. Since the
introduction of such a velocity-dependent term in the drag force would
introduce an additional fitting parameter, we chose not to consider such an
extension here. From the fitting procedure leading to Fig. 4.3(a) we obtain
the dependence of κ on the ambient pressure plotted in Fig. 4.3(b), which
suggests a power-law relation of the form κ ∝ p−1/2. It is this empirical
relation that we used to calculate the trajectories which are compared to
the experimental ones in Fig. 4.2(a).

Figure 4.3: (a) Final depth as a function of the Froude number at different pres-
sures p = 1(•), 0.4(?), and 0.025(�) bar. The lines are fits using the prediction
of zfinal by the force model, where the drag force coefficient κ is the only free pa-
rameter. The model describes the experimental data for low Froude numbers well.
The values of κ that result from the fits are plotted in (b), suggesting a relation of
the form κ ∝ p−1/2.

Now that we know the trajectory of the ball in the sand at different
pressures, we can estimate the time tc and depth zc at which the void created
by the ball first closes during its collapse, by proceeding in the same way
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as in [1]: The cavity is assumed to be cylindrical upon creation and starts
to collapse radially immediately after the ball passes. Thus, the total time
needed for the cavity to close at depth z is found by adding the time tpass(z)
the ball needs to reach this depth (which follows directly from the calculated
trajectory of the ball) and the time tcoll(z) needed for the subsequent collapse
at depth z. This last quantity follows from the two-dimensional Rayleigh
equation introduced in [1], which can conveniently be rewritten in non-
dimensional form by introducing R̂ = 2R/D and t̂ = t 2

√
gz/D

(R̂
¨̂
R +

˙̂
R2) log

R̂

R̂∞

+
1

2
˙̂
R2 = 1, (4.2)

with initial conditions R̂(0) = 1 and
˙̂
R(0) = 0. Note that the resulting

non-dimensional initial value problem is independent of depth due to the
assumption that the cavity is cylindrical upon creation, i.e., Ṙ = 0. This
is not the case if there would be some initial expansion of the cavity,
corresponding to a nonzero initial velocity as a initial condition to Eq.( 4.2).

By solving Eq.( 4.2) we find a unique solution R̂(t̂), which becomes zero
at t̂ = t̂coll, and which only depends on the value of R̂∞. The z-dependence
of dimensional collapse time tcoll now follows from tcoll = t̂collD/(2

√
gz). If

we equate R∞ with half the container size, we find t̂coll = 0.78. The depth
zc and time tc at which the cavity will collapse is now found by determining
the minimum of this total time ttotal(z) = tpass(z)+tcoll(z) with respect to z.

The resulting closure time tc turns out to hardly depend on pressure, and
is plotted as a single point (blue star) in Fig. 4.2(a). The calculated closure
depth zc however does depend on p and is compared to the experimentally
determined location zi of the ball at closure time in Fig. 4.2(b). Note that,
although plotted with different vertical scales, the experimental quantity zi

and the calculated closure depth zc show a remarkably similar trend: Both
quantities are more or less constant for high pressures and show a sharp
decrease below p ≈ 400 mbar.

Moreover, this trend is the same as was observed for the jet height h in
experiment, which can be explained by taking another look at the Rayleigh

equation Eq. (4.2): By eliminating t̂ between R̂(t̂) and
˙̂
R(t̂) we find

˙̂
R(R̂).

From this we find the dimensional velocity to obey Ṙ =
√

gz f(R/R0),

where f(x) ≡ ˙̂
R(x) is a function which only depends on R∞. Since the

initial jet diameter will be determined by geometrical and rheological
considerations only, it can be set proportional to the grain diameter d (with
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a proportionality constant of order 10) with which we fix f(R/R0) and
can estimate the pressure build-up at the collapse depth just before the jet
comes out using Bernoulli’s equation: p ∝ gzc. Since this pressure is then
released into the jet, we can now estimate the jet height h ∝ v2

jet ∝ p. We
thus find that in the model h ∝ zc explaining not only the fact that h and
zc follow the same trend but also the observation of Fig 4.1(c) that when
zfinal determines the closure depth rather than Fr we find a linear relation
between zfinal and h.

We conclude that all the experimental observations are consistent with a
gravitational collapse model of the cavity that is created upon impact. The
ambient air would only indirectly affect the jet formation by influencing the
drag force on the ball by the sand.

Figure 4.4: Behavior in time of the volume occupied by the sand bed after the
impact of the ball for Fr = 132 and different pressures. ∆V = V (t) − V (t = 0),
where V (t) is the total volume occupied by the sand bed and t = 0 is the moment of
impact. Vb = (π/6)D3 is the volume of the impacting ball with D = 1.6cm. Each
curve is the average of three independent experiments. The bed expands more at
higher pressure, which is in accordance with our hypothesis of the fluidization of
the bed due to the flow of interstitial air.
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4.5 The origin of the increased drag at reduced

pressure

But, how does the ambient pressure modify the rheological properties of the
sand? We believe that the flow of interstitial air that the ball creates while
moving through the sand further fluidizes the sand‡, effectively reducing
the drag on the ball. When the pressure is reduced there is less interstitial
air, and the fluidization would be less important.

In order to test this idea we studied the change in the total volume
occupied by the sand bed after the impact of the ball by imaging with
a fast video camera (at 1500 frames per second) one of the lateral,
transparent walls of the container at the level of the bed surface. The
product of the cross section of the container and the total height of
the bed measured with the camera gave us an estimation of the total
volume V (t) occupied by the sand bed at time t. Figure 4.4 shows
∆V = V (t) − V (t = 0) for a Froude number of 132 and at different
pressures, where t = 0 is the moment of impact. It can be seen that
the bed expands more at higher pressure, which is in accordance with
our hypothesis of the fluidization of the bed due to the flow of interstitial air.

Moreover, if one compares the (lower Fr) trajectories of Fig. 4.2(a) with
the timescale of the rising in Fig. 4.4, one finds that at least for pressures
above 400 mbar, the trajectories are almost identical while the expansion of
the bed in this pressure range shows large differences. It can therefore be
excluded that the observed differences in bed height can be attributed to
the displacement of grains needed by the ball to create the cavity and the
expansion of the bed must therefore indeed be due to the levitation of sand
by the interstitial air flow.

4.6 Conclusion

In conclusion, we found that ambient air does not play a direct role in the
formation of a granular jet in loose, fine sand. Instead, we have shown that
the jet is less vigorous at reduced pressures because the ball penetrates

‡The idea that the evacuation procedure would somehow cause an irreversible change
in the microstructure of the sand bed was discarded by a simple experiment: First the
ambient pressure was reduced to a level of several tens of millibars and subsequently air
was slowly let in until the system reached atmospheric pressure again. Conducting the
impact experiment following this procedure gives exactly the same result as without.
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less deep into the sand and consequently the collapse of the void is less
violent. The effect of the ambient pressure on the intensity of the jet is
indeed closely related to the “dynamic coupling between gas and granulate
motion” [2]. Our experiments show that the origin hereof is that also
the trajectory of the ball is strongly influenced by the ambient pressure,
presumably because the air flow around the moving ball partially levitates
the grains and effectively reduces the drag force on the ball.

Finally, in our experiments with a D = 1.6 cm ball we do not observe the
thick jet reported by Royer et al. [2]. Changing the ball diameter to 2.5 cm
does however produce both the thick and thin jet for high Fr numbers. We
therefore speculate whether the thick jet may be due to boundary effects.
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Chapter 5

Giant bubble pinch-off‡

Self-similarity has been the paradigmatic picture for the pinch-off of a drop.
Here we will show through high-speed imaging and boundary integral simula-
tions that the inverse problem, the pinch-off of an air bubble in water, is not
self-similar in a strict sense: A disk is quickly pulled through a water surface,
leading to a giant, cylindrical void which after collapse creates an upward
and a downward jet. Only in the limiting case of large Froude number the
purely inertial scaling h(− log h)1/4 ∝ τ1/2 [1] for the neck radius h becomes
visible. For any finite Froude number the collapse is slower, and a second
length-scale, the curvature of the void, comes into play. Both length-scales
are found to exhibit power-law scaling in time, but with different exponents
depending on the Froude number, signaling the non-universality of the bubble
pinch-off.

5.1 Introduction

The pinch-off of a liquid drop is a prime example of a hydrodynamic
singularity and has been studied extensively in recent years [2–5]. It has
become paradigmatic for self–similar behavior in fluid dynamics: After
appropriate rescaling, the shapes of the pinching neck at different times
can be superimposed onto a single shape [6–9]. With the exception of some
pioneering work [10, 11], the inverse problem of the collapse of a gas–filled
neck surrounded by a liquid has not attracted much attention until very
recently, with the analysis of the pinch-off of a bubble rising from a needle
and the break–up of a gas bubble in a straining flow [1, 12–14]. The

‡Published as: Raymond Bergmann, Devaraj van der Meer, Mark Stijnman, Marijn
Sandtke, Andrea Prosperetti, and Detlef Lohse, Giant bubble pinch-off, Phys. Rev. Lett.
96, 154505 (2006).
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time–evolution of these collapsing gas–filled necks is found to follow a power
law. If the dynamics near the singularity are solely governed by liquid
inertia, then the radius of the neck h expressed in the time τ remaining until
collapse scales as h ∝ τ1/2 [10, 11, 14], or, with a logarithmic correction, as
h(− log h)1/4 ∝ τ1/2 [1]. Deviations from this exponent of 1/2 are reported
to occur only due to the inclusion of other effects. The collapse may be
slowed down by viscosity (h ∝ τ [13, 14]) or surface tension (h ∝ τ2/3 [12]),
or accelerated by the inertia of the gas flowing inside the neck, leading to
h ∝ τ1/3 [1].

In this chapter we focus on another example of this “inverse pinch-off”,
namely the violent collapse of the void created at a fluid surface by the
impact of an object. Here we find exponents which deviate substantially
from 1/2, even though the dynamics are shown to be purely governed by
liquid inertia, without significant contributions from the effects mentioned
above. The self-similar behavior h(− log h)1/4 ∝ τ1/2 appears to hold only
in the asymptotic regime of very high impact velocities.

5.2 Experiment

In our experiment, a linear motor is used to drag metal disks with radii
hdisk between 10 and 40 mm through an air/water interface with a
well-controlled, constant velocity V between 0.5 and 3 m/s (see Fig. 5.1a).
A rod running through a seal in the bottom of a large water tank connects
the disk with the linear motor. This arrangement generates giant voids in
a very controlled fashion. The advantage of this setup is that the velocity
is a control parameter and not the response of the object to the fluid forces
upon impact. Secondly, due to the large scale of the experiment, viscosity
and surface tension play a negligible role†. Therefore the only important
dimensionless parameter is the Froude number Fr = V 2/(hdiskg), the
ratio of kinetic to gravitational energy, which ranges from 0.6 to 90. The
large scale of the experiment is also advantageous for the observation
of details during the impact and collapse process, which is imaged with
digital high-speed cameras with frame rates up to 100, 000 frames per second.

†Viscosity and surface tension effects are quantified by the magnitude of the Reynolds
(Re) and Weber (We) numbers, which are considerable (> 102) during the pinch-off pro-
cess. This holds when they are defined globally, i.e., with respect to the impact velocity
and the disk radius (Re = hdiskV/ν and We = hdiskV 2ρ/σ), but also when they are
defined locally using the neck radius and velocity at a specific time (Re = hḣ/ν and
We = hḣ2ρ/σ).
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Figure 5.1: Snapshots of the formation and collapse of a surface void for the
plunger experiment: A linear motor pulls down a disk of radius hdisk = 30 mm
through the water surface at a constant velocity V = 1.0 m/s (Fr = 3.4). (a-d)
Collapse of the void imaged at a 1000 frames per second (fps). The white lines
(overlay) are the void profiles obtained from boundary integral simulations with
the same initial condition, and without the use of any free parameter. (e-f) Details
of the collapse imaged at 12800 fps. (g-h) Details of the collapse imaged at 48000
fps. Note that the field of view decreases with increasing frame rate. In the very last
stages of the collapse (f-g) there is a Kevin-Helmholtz instability that complicates
the determination of the time of collapse. Immediately after the collapse air is
entrapped, both in the form of a large bubble above disk (d) and as a cloud of
microbubbles at the collapse point (h).

A typical series of events is seen in Fig. 5.1a-d. The impact of the
disk creates an axisymmetric void which first expands until the hydrostatic
pressure drives the walls inward. The inward moving walls collide and cause
a pinch-off at some depth below the undisturbed free surface. The energy
focusing of this violent collapse creates a strong pressure spike on the axis
of symmetry which releases itself in a downward and an upward jet [15, 16].
The latter reaches heights exceeding 1.5 m for the higher impact speeds
in this experiment. It is this dominating role of inertia that makes our
system different from other pinch-off processes in the literature. At higher
recording speeds the pinch-off can be investigated in more detail as in
Fig. 5.1e-h. There is a clear loss of both azimuthal and axial symmetry in
Figs. 5.1f and 5.1g, which can be attributed to a combination of the same
convergence effect that causes an instability in a collapsing bubble [17–19],
and a Kelvin-Helmholtz instability due to the rapid air flow in the neck.
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The latter increases with increasing Froude number and limits the range
of our experiments. Another factor which limits the Froude number range
is the so-called surface seal, in which the void closes at the water surface
as the crown-like splash is entrained by the air flowing into the expanding
void [20, 21]. This process, which occurs at large Froude numbers, changes
the pinch-off considerably since in this case the gas pressure inside the void
differs appreciably from that of the ambient air.

In view of these experimental limitations, we performed numerical simu-
lations using a boundary integral method based on potential theory without
ambient gas∗. There is an excellent agreement between the numerical cal-
culations and the experiments, as seen in Fig. 5.1a-c. Here, the numerical
void profiles (the solid white lines) coincide very well with the experimental
profiles in the pinch-off region without the use of any adjustable parameter,
either in space or in time.

5.3 Time evolution of the neck radius

To further quantify the pinch-off process, we now turn to the time evolution
of the neck radius h(τ), measured at the depth at which the void eventually
closes. Because both length and time scales become very small close to
collapse, it is not feasible to experimentally observe the collapse with
only one high-speed camera recording†. Due to the reproducibility of
the experiment, we overcame this difficulty by matching several data sets
imaged at different frame rates, increasingly magnifying the region around
the pinch-off. Figure 5.2a contains a doubly logarithmic plot of h(τ) for
both the high-speed imaged experiments and the numerical calculations,
again showing excellent agreement for different Froude numbers. There is
a clear power-law behavior. Compensating the data with τ1/2 (Fig. 5.2b)
and subsequently plotting the corresponding power-law exponent αh as a
function of Fr (Fig. 5.2d) reveal large deviations from the suggested 1/2
power law. Can these be explained by a logarithmic correction as proposed
in [1]?

∗The ambient air will be included in a forthcoming publication, also using the boundary
integral method.

†We image the pinch-off process over four orders of magnitude in time and two in
space. As the field of view of the camera corresponds to 103 pixels, this would leave only
10 pixels for the last stage of the collapse. The whole sequence should then be imaged at a
frame rate corresponding to the smallest timescale (10µs), i.e., 100 kHz requiring at least
10 GB of fast storage capacity, greatly exceeding the physical capabilities of our cameras.
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Figure 5.2: (a) The radius of the void at the depth of closure h (lower three
curves) and the radius of curvature of the void profile R (upper three curves) as
a function of the time τ remaining until collapse in a doubly logarithmic plot, for
Fr = 3.4 (I), Fr = 10.2 (II), and Fr = 163 (III). Both h and R are well described
by power laws for up to four orders of magnitude in τ . Experiment (blue dots) and
numerical simulations (red dots) agree very well for Fr = 3.4 and 10.2. For Fr =
163 only numerical data are presented, because here experiments are hindered by
the surface seal (see text). The error bars, indicating the error in the experimental
data, are usually small, but occasionally become large for frames very close to
the collapse time. (b) Doubly logarithmic plot of the void radius h compensated
with τ1/2 to better show the deviations from the expected power-law behavior. (c)
Doubly logarithmic plot of the radius of curvature R compensated with τ1/2 for the
numerical simulations of (a-b). (d) Power-law exponents αh for the radius of the
void at closure depth h(τ), αy for the radius of the void including the logarithmic
correction y(τ) = h(− log h)1/4, and αR for the radius of curvature R, all as a
function of the Froude number.
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Let us first establish the origin of this logarithmic correction in our sys-
tem. Near the neck, the flow induced by the collapsing void looks very much
like that of a collapsing cylinder, while it must look like that of a sink, plus
its image in the free surface (i.e., a dipole) in the far region. In the language
of singular perturbations, the former would be the inner region and the lat-
ter the outer region; a complete descriptions would require the matching
of these two regions. If we disregard the outer region, we can use a two-
dimensional version of the Rayleigh-equation, which describes the collapse
of an infinite cylindrical cavity under uniform pressure [11, 16, 22]

[

d(hḣ)

dτ

]

log
h

h∞
+

1

2
ḣ2 = gZ . (5.1)

The pressure difference driving the collapse has been equated to ρgZ, where
Z denotes the depth below the fluid surface, which implies that the system
is composed of non-interacting horizontal layers of fluid, with a negligible
vertical velocity component‡. Although the quantity h∞ must in principle
be determined by the matching process alluded to before, it is expected to
be of the order of a typical length scale of the process, such as the cavity
depth. Thus, strictly speaking, h∞ is a function of time and of the Froude
number. However, near pinch-off, the time scale for the neck motion is much
faster than that for the evolution of the other parts of the cavity so that h∞

may be considered only a function of Fr. After an initial expansion of the
void, the collapse starts from rest at a maximal radius hmax (of the order
of hdisk). Using this as an initial condition, and treating h∞ as a constant,
the energy integral of Eq. (5.1) can be readily found:

(

dh̃

dτ̃

)2

=
1

log(h̃/h̃∞)

[

1 − (1/h̃)2
]

, (5.2)

where we have introduced the non-dimensional variables h̃ ≡ h/hmax, h̃∞ ≡
h∞/hmax, and τ̃ ≡ τ

√

gZ/h2
max. Close to pinch-off, h̃2 � 1, such that

h̃−2 − 1 ≈ h̃−2. With this approximation, we can integrate Eq. (5.2) once
more to arrive at

2 τ̃ = h̃2
√

log(h̃∞/h̃) +

√
π

2
h̃2
∞ erfc

(√

2 log(h̃∞/h̃)

)

. (5.3)

For small h̃ the term with the complementary error function is always small
compared to the first one and their ratio vanishes for h̃ ↓ 0. Neglecting this

‡A similar equation is used in [1], without the term h∞ and also without the hydrostatic
driving pressure gZ.
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term we find two asymptotic regimes

h̃
(

log(h̃∞)
)1/4

=
√

2 τ̃1/2 for h̃ � 1/h̃∞ , and (5.4)

h̃
(

− log(h̃)
)1/4

=
√

2 τ̃1/2 for h̃ � 1/h̃∞ . (5.5)

From Eqs. (5.4) and (5.5) we conclude that the scaling depends crucially
on the value of h∞: Initially, for the intermediate regime h � h2

max/h∞, we
expect to find a strict power law h ∝ τ1/2, since log(h̃∞) is constant. For
times closer to the pinch-off, when h � h2

max/h∞, logarithmic corrections
play a role, and the power law should be modified into Eq. (5.5).

As h∞ ≈ hmax in our experiments, the latter inequality can be read as
h � hmax, which is satisfied in most of the region where h(τ) asymptotically
behaves as a power law (cf. Fig. 5.2a-b). We conclude that in our system
the logarithmic correction cannot be neglected. If we plot the quantity
y = h(− log h)1/4 vs. time, we again observe a power law y ∝ ταy , but
with a slightly different exponent αy than the one found for h. In Fig. 5.2d
we compare αh and αy as functions of the Froude number. As discussed
before, αh is substantially larger than 1/2, but even if the logarithmic term
is included we continue to find a slower collapse for low Froude numbers.
Although the logarithmic correction does bring the result closer to the
suggested value 1/2, it cannot account for all of the observed deviations.

Clearly, the observed anomalous power law behavior of the neck radius
must reflect itself in the time-evolution of the free-surface profiles of the
collapsing void. If the process were self-similar, the free-surface profiles at
different times τ would superpose when scaled by any characteristic length,
e.g., the neck radius h. Actually, it is found that the depth of minimum
radius increases somewhat as the collapse progresses and it is therefore nec-
essary to translate the profiles in the vertical direction so as to match the po-
sition of the minimum radius point before attempting this operation. Even
if this is done, however, the results fail to collapse onto a single shape when
using a single length-scale. The rescaled profiles become more and more
elongated as the pinch-off is approached which proves that the collapsing
void is not self-similar in a strict sense.



54 CHAPTER 5. GIANT BUBBLE PINCH-OFF

5.4 Time evolution of the void profile near pinch

off

The free-surface shapes near the minimum point should thus not only be
characterized by h(τ), but also by a second length-scale, the radius of
curvature R(τ) in the vertical plane (see Fig. 5.1e). The spatial resolution
of the high-speed camera images limits the accuracy with which R can be
extracted from the experimental observations, but this quantity is easily
determined from the numerical calculations (see Fig. 5.2a,c). When the
radial dimensions (H, cf. Fig. 5.1e) are scaled by h and vertical ones (Z)
by

√
hR, the profiles do collapse onto a single curve. This, however, may

only signal that their shape is very close to parabolic§. The time-evolution
of this radius of curvature is also found to follow a power law, R = R0τ

αR ,
the exponent αR of which increases with the Froude number as can be seen
in Fig. 5.2d¶.

The essence of the time-evolution of the void profile and the departure
from self-similarity in the strict sense is captured in the aspect ratio
h/R of the collapsing void, h(τ)/R(τ) = (h0/R0) τ (αh−αR), in which the
prefactor h0/R0 and the exponent (αh − αR) both are found to depend
on the Froude number. It is seen in Fig. 5.2d that αh − αR > 0 for any
finite Froude number, causing the ratio h(τ)/R(τ) to vanish in the limit
τ → 0. This means that in this limit R(τ) becomes large with respect
to the neck radius, elongating the profiles more and more towards the
cylindrical shape close to the pinch-off, thereby justifying the assumptions
made in the derivation of Eq. (5.1) in the limit τ → 0. A numerical fit gives
(αh − αR) ∝ Fr−0.14, which indicates that h and R have the same time
dependence as Fr → ∞ and, therefore, that self-similarity is recovered in
this limit. A second numerical fit shows that h0/R0 ∝ Fr−0.60, which tends
to zero as Fr → ∞. This feature expresses the experimental observation
that the initial elongation of the neck is larger for large Froude number,
which effectively increases the time-interval for which the assumption of
pure radial flow is valid [cf. Eq. (5.1)].

§At the minimum 1/R(τ) = d2H/dZ2|Z=Zmin
and the shape of the interface can be

taken to be locally parabolic, which implies H = (δZ)2/R(τ)+h(τ) with δZ = Z −Zmin.
The scaling of the radial direction H with h(τ) then leads to the scaling

√

h(τ)R(τ) for

the axial direction Z. The aspect ratio of the void is then given by H/Z = (h(τ)/R(τ))1/2.
¶The fact that both h and R are described by power laws suggests that we may be

dealing with self-similarity of the second kind, in which the radial and axial coordinates
are rescaled by different power laws of time [23]. At present there is however insufficient
experimental and theoretical ground to substantiate such a claim.
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5.5 Conclusion

In conclusion, our experiments on the collapse of a giant surface void are in
excellent agreement with boundary integral calculations without the use of
any adjustable parameter. Even when we exclude the effects of air, viscosity,
and surface tension, the collapse is found to be not self-similar in a strict
sense, but governed by power laws with non-universal, Froude-dependent
exponents. Very near to pinch-off the void profile approaches the cylindrical
shape, a regime that is approached earlier as the Froude number is larger.
Self-similarity is recovered only in the limit of infinite Froude number,
where the influence of gravity becomes negligible and the collapse is truly
inertially driven.
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Chapter 6

The controlled impact of a

disk on a water surface:

Cavity dynamics‡

In this chapter we study the transient surface cavity which is created by the
controlled impact of a disk on a water surface. We performed boundary
integral simulations and compared them to high speed recordings and particle
image velocimetry measurements of the experiment. We found an excellent
agreement between experiments and simulation for the interface and flow
surrounding the transient cavity.
We also present a simple model for the radial dynamics of the cavity based
on the collapse of an infinite cylinder. This model accounts for the observed
asymmetry of the radial collapse between the expansion and contraction of
the cavity. It reproduces the scaling of the closure depth and total depth of
the cavity which are both found to scale roughly as ∝ Fr1/2 with a weakly
Froude number dependent prefactor. The model also accurately captures the
dynamics of the minimal radius of the cavity.

6.1 Introduction

A spectacular example of free surface flow is the impact of an object on
a liquid: The impact creates a splash and a surface cavity which then
collapses under the influence of hydrostatic pressure. At the singularity

‡This chapter will evolve into a manuscript: Raymond Bergmann, Stefan Gekle, Arjan
van der Bos, Devaraj van der Meer, and Detlef Lohse, The controlled impact of a disk on

a water surface: Cavity dynamics, to be submitted to J. Fluid Mech.
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where the two walls of the cavity collide, two powerful jets develop, one
downwards and the other one upwards to several meters high, making this
fast event an impressive scene. Research into the physics of these transient
surface cavities started at the beginning of the twentieth century when
A.M. Worthington published his famous work ”A study of splashes” [1].
His photographs revealed a wealth of phenomena of unanticipated complex-
ity [2]. Although much has been contributed to the understanding of these
phenomena, many of the intriguing questions posed by Worthington’s pho-
tographs resonate still today [3, 4]. All investigations since Worthington’s
studies entailed experiments with a freely falling object impacting into the
free surface.
To gain further insight into impact events, we built a setup in which
we attach the impacting object to a linear motor. In this way we gain
full control over the impact velocity, which now turns from a response
observable into the key control parameter of the system.

The dynamics of a surface cavity are of enormous practical importance
in many natural and industrial processes: Raindrops falling onto the
ocean entrain air [5–7] and it is this mechanism which is one of the
major sinks of carbon dioxide from the atmosphere. Droplet impact and
the subsequent void collapse are also a significant source of underwater
sound [8] and a thorough understanding is therefore crucial in sonar
research. High speed water impacts and underwater cavity formation are
moreover of relevance to military operations [9, 10]. In the context of
industrial applications, drop impact and the subsequent void formation
is crucial in pyrometallurgy [11, 12], in the food industry, and in the
context of ink-jet printing [13–15]. A similar series of events as in water can
even be observed when a steel ball impacts on very fine and soft sand [16–18].

Although in some of the literature the deceleration of the impacting
body was minimized by choosing the properties of the body such that
the velocity of the impactor remained roughly constant during the time
the cavity dynamics were observed [19, 20], the velocity of the body
nevertheless remained a response parameter set by the system. We use a
linear motor to accurately control the position, velocity, and acceleration
of the impacting object, which constitutes the key difference between our
work (see also [21, 22]) and all previous ones.

In this article, we will use observations from experiments and boundary
integral simulations to construct a model which accurately describes the
radial dynamics of the cavity.
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Figure 6.1: Schematic figure of the experimental setup with the linear motor
controlling the rod and disk. The vertical rod runs through a seal in the
bottom of the glass water tank and is pulled down by the linear motor in
order to impact the disk on the water surface.

We will start in Section 6.2 by comparing our controlled experiment to the
boundary integral simulations. Starting in Section 6.2.1 with the dynamics
of the free surface, while in Section 6.2.2 the topology and magnitude of the
flow surrounding the cavity obtained by particle image velocimetry will be
compared to the simulations.
In Section 6.3 we will derive a model which captures the radial dynamics
of the cavity and use it to derive the following key characteristics of the
transient surface cavity: The depth at which the pinch-off will occur is
discussed in Section 6.3.1. In Section 6.3.2 the influence of the flow on
the asymmetry between the radial expansion and collapse of the cavity is
examined. The amount of air entrained by the cavity collapse is studied in
Section 6.3.3. In the last two sections the dynamics of the minimal void
radius is studied (Section 6.3.4) and the cavity shape around this minimal
radius ar discussed (Section 6.3.5).

6.2 Experimental and numerical results

A sketch of the setup is seen in Fig. 6.1. A disk of radius h0 is mounted on
top of a thin rod (∅ 6 mm). This rod runs through a seal in the bottom
of a large tank (500 mm×500 mm×700 mm) and is connected at the lower
end to a Thrusttube linear motor which is used to determine and control
the velocity and acceleration of the object. The position of the motor
along the vertical axis is measured with a spatial accuracy of 5 µm over
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a range of 1 m, the large acceleration of the motor (up to 30 g) makes it
possible to perform impact experiments with constant velocities up to 5 m/s.

The effect of the small diameter of the rod on the global flow and
dynamics of the cavity is assumed to be negligible. As the minimum
radius for the disk used in the experiments is 10 mm, the ratio of the
cross–sectional area of the rod and the surface of the disk is always smaller
than 9%. Since the rod is mounted in the center of the disk, where
stagnation would normally occur, the influence on the radially outward flow
below the disk is small.

Using the flat plate approximation, we can also estimate the direct
contribution of the boundary layer of the rod to the axial flow. The
boundary layer thickness δ for a flat plate is given by Blasius’ solution of
δ = 5

√
νtdev, where ν is the kinematic viscosity of water and tdev the time

the boundary layer has to develop. We will equate the time tdev to the
duration of the experiment, namely to the time from the impact of the
disk until the collapse of the void, which in experiments [19] was found to
be equal to tdev ≈ 2.3

√

h0/g, where g is the gravitational acceleration. In
the worst case, for the largest disk size in the experiment h0 = 40 mm,
this boundary layer will be 1.8 mm and considerably thinner under most
experimental conditions.

In our experiments we pull the disk down with a constant velocity V .
Making this main control parameter dimensionless, we obtain the Froude
number Fr = V 2/(gh0). The liquid properties are expressed in terms of the
Reynolds number Re = V h0/ν and the Weber number We = ρV 2h0/σ,
where σ denotes the surface tension and ρ the fluid density. Since the
Reynolds number and the Weber number are considerable on the large scales
of Fig. 6.1, the viscosity and the surface tension do not seem to play a role.
In our experiment the Reynolds number ranges between 500 and 1.6 · 104

and the Weber number ranges between 34 and 8.8 · 103. However, note
that under only slightly different conditions, namely replacing the disk by
a cylinder emerged in water to avoid the splash, capillary waves do play
a role, (see [22]). But, since this is not the case here, the only important
dimensionless parameter is the Froude number, e.g., the ratio of kinetic to
gravitational energy, which ranges from 0.6 to 200.

The numerical calculations are performed with a boundary integral
method to solve the flow potential in the bulk. The potential flow assump-
tion excludes viscous effects and vorticity, which due to the short duration
of the phenomenon and the high Reynolds number seems reasonable.
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6.2.1 Interface

The series of events typical for the experimental range of 1 < Fr < 100
is seen in the snapshots of Fig. 6.2a, b, and c. Upon impact a splash,
an outward moving crown of water, is formed. A void is created which
collapses due to the hydrostatic pressure and a singularity arises when the
collapsing walls of the void collide with each other. Two jets emerge in this
experiment: One upwards straight into the air, and one downwards into
the entrained air bubble.

In the first two sequences for Fr=0.85 and Fr=3.4 (Figs. 6.2a and
b), the cavity dynamics is found to be captured extremely well by the
numerical result, represented by the overlaid lines. Note that this is a one
to one comparison, without any rescaling in time or space. Due to the
axisymmetry of the code it is not possible to capture the full details of the
splash and therefore we chose to take out any droplets which are released
from the splash. Surface tension however still expresses itself in small
capillary waves in the region of the splash, these waves are most notable in
Fig. 6.2a. As was mentioned before, it is these waves which are found to
have a significant influence on the closure of the cavity for the emerging of
a cylinder [22], however in the present regime discussed in this paper for
the impacting disk, these waves do not affect the closure.

In Chapter 5 we previously presented similar results for the comparison
between the experiment of the impact of a disk and the boundary integral
simulations at a Froude number of 3.4. Here, we also include the results
for Fr=0.85 in Fig. 6.2a, to illustrate the effect of the increased significance
of gravity. In the last frame of Fig. 6.2a it can be seen that the cavity is
less symmetric in axial direction around the closure point compared to the
experiment performed at Fr=3.4. In Fig. 6.2c we also present impact ex-
periments which go beyond the Froude number range described in Chapter 5.

For this third sequence at Fr=13.6 (Fig. 6.2c) significant deviations
between the experiment and the numerical cavity shape are found, most
notably in the enlargement of Fig. 6.3 at the depth of the cavity closure.
The closure of the cavity is found to be somewhat deeper in the numerics
as compared to the experiments. This deviation can be attributed to a
secondary effect due to the surrounding air, called the surface seal. This
phenomenon was first reported by Worthington [1] and is shown in detail
in Fig. 6.4. Note that the impact experiment of Fig. 6.4 is performed under
the same conditions as Fig. 6.2c. The surface seal is the entrainment of
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the initially outward moving splash by the air rushing into the expanding
cavity. If the airflow is strong enough, the splash will close on the axis of
symmetry and completely seal off the top of the cavity above the height of
the undisturbed water surface.

The surface seal is found to become more pronounced at higher impact
velocity, where the surface seal occurs earlier and more liquid is involved in
this closure. Accordingly there is also a larger influence on the shape of the
cavity at higher impact velocity. Since this chapter aims to treat the purely
pressure driven collapse of the cavity, without the contributions of the
surrounding air, our experimental range is limited by the occurrence of the
surface seal. In the simulations we therefore intentionally do not include
the air. This explains the discrepancy of Fig. 6.2c (enlarged in Fig. 6.3),
since contrary to the experiments, no surface seal occurs in the numerics
due to the absence of air. In Fig. 6.2d we go far beyond the experimentally
available range by performing simulations at a Froude number of 200.

It is instructive to compare the present boundary integral simulation
results with the one reported by Gaudet [20], who reported a bulging
contraction of the cavity at the surface level, which he found to close for
Fr ≥ 200 and interpreted as a surface seal in the absence of air. We found
no evidence for such a surface seal in our simulations, even for considerably
larger Froude numbers, and surmise that the effect reported by the author
of [20] may be connected to using an insufficient number of nodes in
the splash region caused by the limited amount of computational power
available at that time.

6.2.2 Flow field

In the previous section we find the experimental shape of the impact cavity
to be well described by our boundary integral simulations if no surface seal
occurs. The question we will pose ourselves in this section is whether the
simulations also give an accurate description of the surrounding flow field.
To this end we will measure the velocity field around the transient cavity
through high speed particle image velocimetry (PIV). These experiments
are crucial to check the validity of the boundary integral simulations, as
the presence of a solid boundary, namely the impacting object, will induce
vorticity in the flow. We will then compare this flow field to the boundary
integral results, and finally investigate the radial flow at the depth of closure.
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Figure 6.2: Snapshots of the formation and collapse of a surface void in
the plunger experiment: A linear motor pulls down a disk of radius h0 =
30 mm through the water surface at a constant velocity (a) V = 0.5 m/s
(Fr = 0.85); (b) V = 1.0 m/s (Fr = 3.4); (c) V = 2.0 m/s (Fr = 13.6);
and (d) Fr = 200. The collapse of the void is imaged at a 1000 frames per
second. The lines (overlay) are the void profiles obtained from boundary
integral simulations. Without the use of any free parameter an excellent
agreement between the simulation and experiment is found in (a) and (b).
Due to a surface seal there is a discrepancy between the simulations and the
experiment in sequence (c). The region of the dashed box is shown enlarged
in Fig. 6.3. The surface seal is aggravated at higher Froude number, so for
(d) no experimental data can be obtained.
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Figure 6.3: Enlargement of the region around the pinch off point at τ = 1
ms from the sequence Fig. 6.2c (Fr = 13.6). A significant discrepancy can be
seen for the depth of the pinch–off between the boundary integral simulation
(white line) and the experimental recording.

Figure 6.4: Snapshots of the surface seal which occurs for a disk of radius
h0 = 30 mm impacting the water surface at a constant velocity of V = 2.0
m/s (Fr = 13.6). The collapse of the void is imaged at a 1000 frames per
second.

To perform the PIV measurements, the fluid is seeded with small
DANTEC Dynamics polyamid tracer particles of radius 25 µm and density
1030 kg/m3 which will follow the flow. A laser sheet shines from the
side through the fluid, creating an illuminated plane. The light scattered
by the particles is captured by a high speed camera at a frame rate of
6000 frames per second and a resolution of 1024x512 pixels. The series of
recorded images is then correlated by multipass algorithms, using DaVis
PIV software by LaVision, in order to determine the flow field in a plane
in the liquid. The correlation was performed in two passes at sub-pixel
accuracy, using 64×64 pixels and 32×32 pixels interrogation windows. The
windows overlap by 50%, resulting in one velocity vector every 16×16 pixels.
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In order to obtain high resolution PIV measurements of the flow around
the cavity, we made use of the perfect reproducibility of the experiment.
The left side of each of the images of Fig. 6.5 shows the flow around the
expanding void by combining the results of four separate PIV measurements
at different depths. In this fashion PIV experiments were performed at
6000 fps for a field of view of 96×56 mm at a spatial resolution of 0.9 mm.
In Fig. 6.5 only 0.7% of the measured vector field is shown. This high
resolution makes it possible to simultaneously compare the global flow, as
well as the smaller flow structures at the pinch–off depth and the disk’s edge.

To compare the experimental flow field to the flow in the simulation,
the right side of each image of Fig. 6.5 shows the numerically obtained
cavity profile and flow field. There appears to be a good agreement,
but one would want a more quantitative comparison between the ex-
perimental and numerical flow field. This is provided in Fig. 6.6, which
shows contour plots of the axial flow component (Fig. 6.6a-d) and the
radial flow component (Fig. 6.6e-f) obtained from the PIV measurements
(at the left side of each image) and boundary integral simulations (at
the the right side of each image). From this figure it is clear that the
magnitude as well as the topology of the flow are in excellent agreement.
Figures 6.5 and 6.6 are a one–to–one comparison between simulation and
experiment, and we stress once more, without the use of any free parameter.

The experimental pictures of Fig. 6.6 reveal that our initial assumption
of Section 6.2, namely to neglect the influence of the rod on the flow, is
correct. The rod is clearly visible in the experimental snapshot Fig. 6.5a
and its downward movement has been detected by the PIV software in
Fig. 6.6a. The flow however is unaffected outside the region occupied by the
rod. The boundary layer of the rod therefore has no significant contribution
to the flow around the cavity. Also, the outward flow at the edges of the
disk in Fig. 6.6e is unaffected by the rod. As can be seen in this figure, the
radial flow decays quickly towards the center of the disk, so the presence of
the rod does not change the topology or magnitude of the flow at the edge
of the disk. This is an important observation as the outward flow below the
disk is responsible for the expansion of the void.

The experimental flow up to 7 disk radii in radial direction at the closure
depth is compared with numerics in Fig. 6.7. Fig. 6.7 gives an indication of
the magnitude of the deviations between the numerical and experimental
flow field. Typically, this deviation is of the order of 0.01 m/s, but it can
be slightly larger if the flow velocity is small. The larger inaccuracy at
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Figure 6.5: The flow field obtained from experiments and boundary integral
simulations for a disk of radius hdisk = 20 mm which impacts with a velocity
of V = 1.0 m/s (Fr = 5.1). The figures show the flow field at τ = (a) 49 ms;
(b) 25 ms; (c) 7 ms; and (d) 1 ms. The left side of each image shows the
flow field (overlaid vectors) obtained from the experiment by four highspeed
PIV recordings at 6000 frames per second. The four different recordings
were taken at different depths and combined to give the flow field in the
experiment at high resolution. The recordings on the left side of each image
show the degree of reproducibility of the experiment, as the match between
the four recordings at different depth is perfect. For clarity only 0.7% of
the vectors is shown. The right side of each of the images shows the void
profile and the corresponding flow field (overlaid vectors) obtained from the
boundary integral calculations.
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Figure 6.6: The axial (left) and radial (right) components of the flow fields
of Fig. 6.5. The four images to the left (a-d) show a contour plot of the axial
flow component from the experiment (left side of each image) and numerics
(right side of each image), the four images on the right (e-h) show a similar
contour plot of the radial flow component from the experiment (left side of
each image) and numerics (right side of each image). Apart from the region
where the rod is pulling down the disk in the experiment, which is absent in
the simulation, both components of the flow field show excellent agreement
between the experiments and numerical calculations.
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Figure 6.7: This figure shows the radial (a) and axial (b) component of the
flow at the depth of the closure zcoll for a disk of a radius of hdisk = 10
mm which impacts at a velocity of V = 1.0 m/s (Fr = 10.2). The symbols
show the result obtained from the PIV measurements at different times,
respectively ♦ : τ = 30.5 ms; � : τ = 20.5 ms; O : τ = 10.5 ms; and O: τ =
0.5 ms, and the solid red line is the equivalent numerical result from the
BI simulation. The PIV data is an average of 6 subsequent measurements
obtained from the high speed PIV recordings at 6000 frames per second.
The vr and vz velocity components shown here are thus the average over
one millisecond.

low flow velocities is generic to the PIV method and can be seen to occur
for τ = 10.5 ms in Fig. 6.7b, but overall an excellent agreement is found
between the far field flow in the numerics and experiments.

In the numerics and simulation of Fig. 6.7a it can be seen that during
the expansion of the void the outward radial flow falls off with the distance
to the symmetry axis. However, when the cavity starts to collapse inward,
the flow is reversed and the radial flow component is seen to cross the x-axis
for τ = 20.5 ms. At this time there is a plane where the radial flow vanishes.
There is however no reversal of the axial flow direction at the closure depth
as can be seen in Fig. 6.7b, so it should not be understood as a stagnation
point of the flow.
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Figure 6.8: Schematic representation of the three regimes for the radial dy-
namics of the cavity at a constant depth z. The first two regimes during a
time ∆texpa+∆tctra are governed by the hydrostatic pressure. These regimes
consist of an expansion and contraction phase for which h∞ differs consid-
erably. In the third regime during a time ∆tcoll, the collapse accelerates
towards the singularity and continuity takes over as the dominant factor.

6.3 Model

In the upcoming sections we will first derive a simple model for the ra-
dial dynamics of the transient cavity. This model will then be applied to
investigate the following key characteristics of the transient cavity:

� The depth of the pinch-off and the depth of the disk at the moment
of pinch–off (Section 6.3.1).

� The role of the flow in the asymmetry between the radial expansion
and collapse of the cavity (Section 6.3.2).

� The amount of air entrained by the cavity collapse (Section 6.3.3).

� The dynamics of the minimal cavity radius (Section 6.3.4).

� The cavity shape around the minimal radius (Section 6.3.5).

6.3.1 Closure depth

Following [19], [20], and [10] we will characterize the shape of the cavity at
pinch–off by the depth of closure zcoll, i.e., the depth at which the pinch–off
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takes place. To capture more information on the full shape of the void,
we will also investigate how zcoll relates to the total depth of the cavity
zdisk(tcoll) = zdisk, coll at the time of collapse (or closure) tcoll.

A comprehensive argument for the scaling of zcoll can be obtained by
following the same procedure as outlined in Chapter 2 for the determination
of the closure depth after the impact of a steel ball on soft sand. However,
now the medium is incompressible and the outward expansion of the cavity
should be taken into account. The argument starts by writing the two-
dimensional Rayleigh-type equation for the void radius at a fixed depth
[17, 23],

[

d(hḣ)

dt

]

log
h

h∞
+

1

2
ḣ2 = −gz . (6.1)

The pressure difference driving the collapse of the cavity with radius h has
been equated to −ρgz, where z denotes the depth below the fluid surface.
The quantity h∞ is the length scale related to the matching of the inner
and outer flow regions. In the region near the neck the induced flow looks
like a collapsing cylinder as described by Eq. (6.1), whereas in the region far
from the neck, the flow resembles a sink (plus its image at the free surface).
A complete description of the flow would require the matching of these two
regions, where h∞ would be determined in the process as the cross–over
length scale. h∞ would thus be expected to be of the order of a typical
length scale of the process, such as the distance of the cavity surface to
the plane where the radial flow vanishes (cf. Fig. 6.7a). Therefore, strictly
speaking, h∞ is a function of time and of the Froude number. In the model
description we will set h∞ to a constant, which resembles the time average
of its dynamics. In Eq. (6.1) it is assumed that the system is composed of
non-interacting horizontal layers of fluid, with a negligible vertical velocity
component.

We can use Eq. (6.1) to analyze the radial dynamics from the initial
impact of the disk t0 to the time of closure of the cavity tcoll at arbitrary
depth z. Time intervals are denoted with ∆t, whereas the previously used
τ denotes the absolute time left till the collapse (τ = tcoll − t). The time
interval between impact and collapse ∆t = tcoll − t0 consists of two main
parts: First, the disk has to reach the depth z. Second, there is the time it
takes for the void to form, expand, and collapse,

∆t = ∆treach + ∆tvoid . (6.2)

The first term can easily be given since the velocity is constant in the ex-
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periment and simulation and therefore it equals ∆treach = z/V . The void
expansion and collapse time ∆tvoid can in turn be decomposed into three
regimes as is schematically depicted in Fig. 6.8. The first two regimes are
the expansion of the void, and the process where the expansion is slowed
down by hydrostatic pressure and reversed into a shrinking of the void. In
both of these regimes, the hydrostatic pressure is the dominant factor, but
they are dissimilar, since the surrounding flow is dissimilar. In the expan-
sion phase the outward radial flow simply decays with the radial distance,
whereas in the contraction phase the radial flow vanishes at a finite distance
(see Fig. 6.7). The third regime is where the collapse accelerates towards
the singularity, and continuity takes over as the dominant factor. So we can
write for the collapse time as (see Fig. 6.8),

∆t = ∆treach + ∆texpa + ∆tctra + ∆tcoll
︸ ︷︷ ︸

∆tvoid

. (6.3)

To estimate these last three timescales, we turn to Eq. (6.1). For the regimes
dominated by the hydrostatic pressure, we observe that the water is first
pushed aside by the passing disk, creating an expanding void. At the max-
imum radius hmax, the expansion is halted and the void starts to contract.
Since ḣ(tmax) = 0, we can assume that ḣ(t) is small during the expansion
and contraction phase and neglect the second term in Eq. (6.1),

[

d(hḣ)

dt

]

log
h

h∞
= −gz . (6.4)

Since log(h/h∞) varies very slowly in these regimes, we equate log(h/h∞) ≈
log(h(tmax)/h∞) and we can solve Eq. (6.4) using h(tmax) = hmax and
ḣ(tmax) = 0, leading to a parabolic approximation,

h2(z, t) = h2
max − gz

β
(t − tmax)2 , (6.5)

with β = log(hmax/h∞). The above equation holds for both the expansion
phase, the time it takes for the void to grow from h0 to hmax, and
the contraction phase, the time it takes to shrink back to h0. As was
mentioned before the flow around the cavity is different in both phases,
resulting in different values of h∞ for both. So during the expansion
we take βexpa = log(hmax(z)/hexpa

∞ ) and during the contraction we take
βctra = log(hmax(z)/hctra

∞ ). hexpa
∞ and hctra

∞ are set to a constant value,
which represents the time averaged behavior of h∞ in the respective phase.
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To find hmax, or the time it will take to get there from the time the disk
passes at t = treach, we need the radial velocity of the initial expansion at
t = treach (see Fig. 6.8). A reasonable assumption is that the disk displaces
water from underneath itself to the sides at a velocity directly proportional
to its travelling velocity. Therefore, we will use ḣ(treach) = αexpaV . For the
velocity at the end of the contraction phase at tcross = treach+∆texpa+∆tctra,
we write in a similar fashion ḣ(tcross) = −αctraV . Of course, for given αexpa,
βexpa, and βctra, the constant αctra is uniquely determined by the continuity
of the trajectory and its derivative, which gives αctra = αexpa

√
βexpa/βctra.

If we combine these two boundary conditions with the time derivative of
Eq. (6.5), we obtain

∆texpa + ∆tctra = (αexpaβexpa + αctraβctra)
h0V

gz
. (6.6)

The third regime, where continuity becomes dominant, can also be an-
alyzed using Eq. (6.1). Near the collapse, h approaches zero, and the log-
arithm diverges. The only way Eq. (6.1) can remain valid is when the
prefactor of the logarithm vanishes. This means that

d(hḣ)

dt
=

1

2

d2
(
h2
)

dt2
= 0 . (6.7)

Integration gives the power law of the two dimensional Rayleigh collapse,

h(t) =
√

C(tcoll − t)1/2 . (6.8)

The value of C follows from the fact that the trajectory in Fig. 6.8 and its
derivative should be continuous. We assume the collapse regime to start at
the end of the contraction phase (Fig. 6.8), where we have h(tcross) = h0

and ḣ(tcross) = −αctraV . From these conditions, the value of C can be
obtained,

C = 2h0αctraV . (6.9)

The estimate for ∆tcoll follows from h(tcross) = h0 and thus we find,

∆tcoll = tcoll − tcross =
1

2αctra

h0

V
. (6.10)

Collecting all the time scales, the total amount of time that passed from the
impact of the disk until the collapse of the cavity at depth z is estimated by

∆t = ∆treach + ∆texpa + ∆tctra + ∆tcoll

=
z

V
+ (αexpaβexpa + αctraβctra)

h0V

gz
+

1

2αctra

h0

V
. (6.11)
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Now, to find the closure depth zcoll, we need to determine where the collapse
will occur first, which we can do by solving

d∆t

dz
= 0 . (6.12)

This gives,

zcoll

h0
=
√

αexpaβexpa + αctraβctraFr1/2 . (6.13)

In addition, the total depth of the disk at the time of collapse, zdisk(tcoll) =
zdisk, coll, can be obtained by plugging Eq. (6.13) into Eq. (6.11) to solve
zdisk, coll = V ∆t,

zdisk, coll

h0
= 2
√

αexpaβexpa + αctraβctraFr1/2 +
1

2αctra
. (6.14)

From Fig. 6.9a it is clear that we find good agreement of the experiments
without a surface seal (blue symbols) and the numerical calculations (black
circles), with the prediction of zcoll/h0 = θFr1/2, with θ = 1.10 obtained
from a fit to the data of zcoll. The agreement between experiments in which
a surface seal occurs (red symbols) and the simulations for a fixed disk size
deteriorates with increasing Froude number, since the surface seal becomes
more disruptive for higher impact velocity.
In the same figure we find, from a fit to the total depth zdisk, coll, that the
constant factor 1/(2α) in Eq. (6.14) has no significant contribution. The
total depth of the void is found to scale as zdisk, coll/h0 = ηFr1/2, with
η = 2.49 close to the prediction of η = 2θ = 2.2. The Froude scaling of
the total depth indicates that the time from the initial impact of the disk
to the time of closure of the cavity does not depend on the velocity of the
impact, since ∆t = zdisk, coll/V = η

√

h0/g.

Note that the Fr1/2 scaling is independent of the individual values that
the parameters αexpa, βexpa, αctra, and βctra take. From the experimental
and numerical data we find

αexpaβexpa + αctraβctra ≈ 1.102 ≈ 1.21 . (6.15)

Together with

αctra = αexpa

√

βexpa/βctra , (6.16)

this effectively reduces the number of free parameters to two, namely αexpa

and βexpa. The parameters αexpa and hexpa
∞ (and thus βexpa) could in
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Figure 6.9: (a) The depth for the collapse of the void zcoll and the depth
of the disk at the time of collapse zdisk, coll for experiments with different
disk radii as a function of the Froude number and for the boundary integral
simulations (open circles). Experiments in which a surface seal occurs during
the collapse are indicated by red symbols, the experiments without a surface
seal by blue symbols. The experiments without a surface seal are found
to agree well with the numerically obtained values (open circles) and the
theoretical prediction for the scaling of zcoll/h0 = θFr1/2 (red dashed line)
and zdisk, coll/h0 = 2θFr1/2 (blue solid line), with θ = 1.10 obtained from a
fit to the data of zcoll. The experiments for which a surface seal occurs are
seen to slightly deviate from this prediction.
(b) The ratio of the depth of the disk at the time of pinch-off zdisk, coll and
the pinch-off depth zcoll for different disk radii as a function of the Froude
number. The experiments without a surface seal (blue symbols) agree well
with the numerical result (open circles). The ratio for the numerical result
and experiments without a surface seal is close to the predicted value of 2
indicated by the black dashed line. The experiments in which a surface seal
occurs are again indicated by the red symbols and found to deviate more
with increasing Froude number for a fixed disk size.
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principle weakly depend upon z, which would lead to slight modifications
in the result of Eqs. (6.13) and (6.14).

To investigate the data of Fig. 6.9 (a) more closely it is convenient to
take the ratio of zcoll/zdisk, coll (see Fig. 6.9 (b)). According to Eq. (6.13)
and Eq. (6.14), this ratio should scale as

zcoll/zdisk, coll = 2 +
1

2αctra

√
αexpaβexpa + αctraβctra

Fr−1/2 ≈ 2 . (6.17)

In Fig. 6.9b the ratio of zcoll/zdisk, coll in the experiments without a surface
seal (blue symbols) and the numerical calculations (black circles) are indeed
close to the constant value of 2 (dashed black line), but at lower Froude
number it decreases slightly in contrary to the proposed scaling by the second
term in Eq. (6.17). This is due to the fact, that the second term of the ratio
(Eq. (6.17)) only becomes relevant when the Froude number is considerably
small. In this limit however also our assumption of non-interacting fluid
layers from Eq. (6.1) breaks down as gravity becomes more important and
Eq. (6.17) is no longer valid. In Fig. 6.9b it is again nicely illustrated that
the experiments with a surface seal (red symbols) deviate more and more
from the simulations without air as the Froude number increases.

6.3.2 The influence of the flow on the cavity dynamics at

closure depth

In the previous section we find that the Rayleigh type model accurately
reproduces key aspects of the cavity shape at pinch–off, namely the closure
and total depth of the cavity. The question we will pose ourselves in this
section is whether the Rayleigh equation also gives an accurate description
of the cavity during the collapse. For this we will investigate the radial
dynamics of the cavity at the depth of closure. In particular we will
relate these dynamics at closure depth to the structure of the surrounding
flow. So we will start by investigating the surrounding flow and use these
observations to match the model of the radial collapse to the dynamics
observed in the simulation.

From Fig. 6.7a it was clear that during the expansion of the void the out-
ward radial flow falls off with the distance to the symmetry axis. However,
when the cavity starts to collapse inward, the flow is reversed and the radial
flow component is seen to cross the x-axis for τ = 20.5 ms, so at this time
there is a plane where the radial flow vanishes. There is however no reversal
of the axial flow direction at the closure depth as can be seen in Fig. 6.7b.
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Figure 6.10: (a) The radial velocity component vr at the moment and depth
of closure multiplied by the radial distance r as a function of the same radial
distance for different Froude numbers. The inset shows the original radial
velocity data. The distance where the radial velocity is zero and the flow is
stagnated in radial direction is indicated by the blue stars. The flow can be
seen to resemble more of a radial sink flow with increasing Froude number as
the minimum of vrr can be seen to decrease with increasing Froude number.
(b) The distance of the point where the radial flow reverses sign to the
symmetry axis, determined at the depth of closure as a function of the time
remaining till closure τ = tcoll − t. Below the curves the flow is directed
inwards, above them it is directed outwards. The distances of the flow
reversal point at τ = 0 from this figure correspond to the blue stars of figure
(a). The distance of the point of flow reversal is directly related to the length
scale hctra

∞ and hexpa
∞ is expected to show similar dynamics with time.

The axial flow however does change sign at a different depth, as must be the
case since a down flow in the upper region of the liquid and an up flow in the
lower region is observed in Fig. 6.6. There must therefore be a stagnation
point (or saddle point) in the (r,z)-plane, corresponding to a circle in three
dimensions where both the axial and the radial velocity components change
sign. To investigate the dynamics of this stagnation point, we turn to
the simulations as they can have an arbitrary fine resolution of the flow field.

Fig. 6.10a shows the radial flow component multiplied by the radial
distance to the axis of symmetry at the depth and moment of pinch-off.
The radial flow component vr is multiplied by the radial distance r for
convenience. The flow at the neck will locally resemble a two dimensional
sink, who’s strength will fall off with 1/r. Therefore multiplying vr with r
eliminates this geometrical contribution to the flow.
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In Fig. 6.10a the lower Froude numbers of 3.4 and 5.12 have a point for
which the radial flow component reverses direction at closure depth (blue
stars). At the higher Froude numbers no such point is observed. This does
not mean that such a flow reversal point is absent during the complete time
of collapse, since in Fig. 6.10b it can be seen that this point travels away
from the axis of symmetry as the collapse is approached (τ → 0). The
radial flow reversal point comes into existence at the wall of the void at the
moment that the cavity starts to collapse and the flow direction is reversed
inward. In Fig. 6.10b it is also seen that the radial flow reversal point trav-
els outward during the cavity collapse much faster for higher Froude number.

Fig. 6.10b leads us to three observations which are relevant for the
model of the cavity collapse presented in Chapter 5 and Section 6.3.1 of
this chapter; (i) Since radial flow reversal occurs when the cavity starts
to collapse and the flow is reversed inwards, the topology of the flow at
closure depth differs between the expansion and contraction phase of the
cavity. This justifies our assumption of taking different values for hexpa

∞

and hctra
∞ during the expansion and contraction of the cavity in the regime

dominated by hydrostatic pressure (see Section 6.3.1). (ii) As the distance
of the radial flow reversal during the collapse moves away faster at higher
Froude number, presumably a higher value for hexpa

∞ should be assumed for
larger Froude number, since the distance where the flow is quiescent should
be correlated to hexpa

∞ (see Section 6.3.1). (iii) In Chapter 5 we show in
Eq. 5.4 that there are two scaling regimes for the neck radius, a first regime
where the neck radius scales as a pure power law of time, and a second
regime, where a logarithmic correction of time has to be taken into account.
The crossover between both regimes is given by the length scale h2

max/hctra
∞ .

As we find from Fig. 6.10b that for all Froude numbers the distance of
the radial flow reversal increases as the pinch-off is approached. We can
presume that thus also hctra

∞ increases as the pinch–off is approached. This
means the cross–over length scale h2

max/hctra
∞ decreases with time.

Therefore the time from the start of the collapse until the pinching
neck decreases to the size h2

max/hctra
∞ will be longer, as compared to the

assumption of a constant value for hctra
∞ . This effect is stronger for increas-

ing Froude number, since the radial flow reversal point at closure depth
moves away faster and further during the collapse for higher Froude number.

In Fig. 6.11 the path of the stagnation point is shown for the simulations
of Fig. 6.10 at Fr = 3.4 and Fr = 10.2. For both experiments the stagnation
point not only moves away from the axis of symmetry as the pinch-off is
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Figure 6.11: The open circles show the path of the stagnation point of the
flow for Froude 3.4 (a) and 10.2 (b). For (a) the first observation of the
stagnation point is made at τ = 61 ms until 1 ms before closure at intervals
of 3 ms. In (b) the first observation is made at τ = 35 ms until 7 ms before
closure at intervals of 1 ms. For clarity only the time till closure is indicated
for every second observation. Further more, the void profiles at the time of
the first (blue) and last (red) observation are shown. The depth of the final
closure is indicated by the dotted line.

approached, but it also moves down in the axial direction and even crosses
the depth of closure. A similar path of the stagnation is observed for all
the simulations of Fig. 6.10, meaning that only at one instant during the
collapse of the cavity does the radial flow reversal point truly coincide with
the stagnation point.

To verify our interpretation of the dynamics of the flow reversal
in relation to hexpa

∞ and hctra
∞ , we will compare the dynamics of the

radius of the void at closure depth with the theoretical prediction of
Eq. (6.5) and Eq. (6.8). As was explained in Section 6.3.1 we have four
unknown parameters in Eq. (6.5) and Eq. (6.8), namely αexpa, βexpa,
αctra, and βctra. One of these parameters is eliminated by the relation
αctra = αexpa

√
βexpa/βctra (see Section 6.3.1), leaving three parameters to

match Eq. (6.5) and Eq. (6.8) to the radial dynamics from the simulations.
The three parameters are the initial outward velocity αexpaV of the cavity
at the beginning of the expansion phase and the logarithm of the distances
related to the radial flow reversal point in the expansion phase βexpa

(= log(hmax/hexpa
∞ )) and contraction phase βctra (= log(hmax/hctra

∞ )). At
first sight, one would assume that the initial outward velocity αexpaV could
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easily be determined from simulation or experiment, since it is observed
as the angle at which the free surface leaves the disk. However when this
angle is investigated, it is found to depend on the distance from the disk’s
edge. As one approaches the disk’s edge close enough, the separation of
the free surface becomes parallel with the disk, so lims↓0 αexpaV → ∞,
where s is the distance along the free surface to the edge of the disk.
This means that αexpaV is a useful theoretical concept, but the outward
radial flow is more easily determined by the maximal expansion of the cavity.

As was seen in Fig. 6.10b the radial stagnation, which is related to
hctra
∞ has non straight-forward dynamics. To simplify our theoretical

approach we will set the corresponding βctra constant to a value which
represents a time average of the dynamics of the stagnation point in the
contraction phase. We will assume hexpa

∞ to be a time averaged constant too.

The three parameters αexpa, βexpa, and βctra are determined by a least
square fit to the dynamics of the neck obtained from the simulations.
Fig. 6.12a shows the comparison between these fits of Eq. (6.5) and
Eq. (6.8) (red dashed line) and the simulations (blue solid line) at two
different froude numbers of 3.4 and 200. The approximation is found to be
in excellent agreement throughout the collapse, faithfully reproducing the
maximum expansion of the cavity and the complete time of collapse.

If in Eq. (6.5) the constants βexpa and βctra are set to -1 and therefore
also αctra = αexpa, we arrive at the cavity dynamics proposed by [10] for
impacting spheres and cylinders. These dynamics are shown in Fig. 6.12b
with the only free parameter αexpa also determined by a least square fit to
the data. This approximation is seen to qualitatively reproduce the trend
for the maximum expansion and collapse time, but fails to capture the exact
values. It is also conceptually different, as the authors of [10] propose the
cavity dynamics to be symmetric around the maximum expansion, while
we try to capture the asymmetry around this point found in experiments
and simulations. Our solution of Eq. (6.5) is explicitly not symmetric, since
it allows for different values of β at t < tmax (βexpa) and t > tmax (βctra).

In Section 6.3.1 the scaling of zcoll/h0 =
√

αexpaβexpa + αctraβctraFr1/2

was derived. The quantity
√

αexpaβexpa + αctraβctra was found to be inde-
pendent of Fr and its value

√
αexpaβexpa + αctraβctra ≈ 1.10 was found from

a fit to the numerical and experimental closure depth zcoll. However from
a similar procedure as for Fig. 6.12a the quantity

√
αexpaβexpa + αctraβctra

can also be obtained from the radial dynamics. If Eq. (6.5) and Eq. (6.8)
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Figure 6.12: (a) The time dynamics of the radius of the cavity at closure
depth for different Froude number. The solid blue line represents the simu-
lations and a least square fit of the approximation by Eq. (6.5) and Eq. (6.8)
is given by the dashed red line. (b) The radial dynamics are again given
by the solid blue line. The red dashed line shows a lest square fit of the
dynamics proposed by [10], which consists of Eq. (6.5) with βexpa and βctra

set to -1.

are fitted to the radial dynamics for a range of Froude numbers, we find
√

αexpaβexpa + αctraβctra to actually weakly depend on the Froude number
(see Fig. 6.13). In light of this observation we compensate zcoll/h0 with the
expected behavior of Fr1/2 and indeed find a residual Froude dependence
in Fig. 6.14. The dependence of

√
αexpaβexpa + αctraβctra on Froude is

logarithmic and therefore hard to notice in a conventional logarithmic plot
like Fig. 6.9.

If we compensate zcoll not only for Fr1/2 but indeed take the full scaling
of zcoll/h0 =

√
αexpaβexpa + αctraβctraFr1/2 into account, including the

Froude dependence of
√

αexpaβexpa + αctraβctra, we recover the correct
scaling of zcoll for higher Froude numbers (see Fig. 6.14). The scaling at
lower Froude number (Fr¡10) deteriorates by this operation, since zcoll at
lower Froude numbers is close to ∝ Fr1/2.

Although the approximation by [10] does not reproduce the radial
dynamics of the cavity, it did produce a ∝ Fr1/2 scaling for the final depth
zdisk, coll and closure depth zcoll. Here, the prefactor of the scaling law
consisted of

√
8αexpa, where αexpa was assumed to be independent of

Froude. However, since different αexpa’s are needed for the fit Fig. 6.12b
and based on Fig. 6.14, αexpa is found to depend on Froude.
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Figure 6.13: The quantity
√

αexpa and
√

αexpaβexpa + αctraβctra obtained
from a fitting routine similar to the least square fits of Fig. 6.12a. Both αexpa

and the quantity
√

αexpaβexpa + αctraβctra are found to weakly depend on
Froude.

We now return to our previous observations on the flow and the possible
consequences for the h∞’s. (i) The flow reversal which occurs when the
cavity starts to collapse indeed introduces an asymmetry in the behavior
around the maximum expansion. This is clearly observed in the radial
dynamics of Fig. 6.12 and a different βexpa and βctra have to be introduced
to account for this effect. (ii) As the distance of the radial flow reversal
during the collapse moves away faster at higher Froude number, we indeed
have to introduce a larger hctra

∞ (or larger | βctra |) for higher Froude number
to account for this effect in Fig. 6.12a.

In Fig. 6.10a it is also observed that the flow is closer to purely two–
dimensional radial sink flow (vr ∝ 1/r) for larger Froude number. This
can be concluded from the decrease in the minimum of vrr with increasing
Froude number. The fact that the radial flow is closer to ∝ 1/r, means that
the collapsing cavity resembles more and more the collapse of the infinite
cylinder described by Eq. (6.1). This is a possible reason why the scal-
ing zcoll/h0 =

√
αexpaβexpa + αctraβctraFr1/2 seems to work best for higher

Froude number in Fig. 6.14.
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Figure 6.14: The closure depth of the cavity zcoll/h0 compensated by the
expected behavior of ∝ Fr1/2 from Section 6.3.1 is found to be weakly
dependent on Fr. By taking into consideration the Fr dependence of
√

αexpaβexpa + αctraβctra observed in Fig. 6.13, we can compensate zcoll/h0

by
√

αexpaβexpa + αctraβctraFr1/2 to remove the Froude dependence at
higher Froude numbers.

6.3.3 Air Entrainment

In this section, the proposed model for the cavity collapse (Sections 6.3.1
and 6.3.2) will be used to understand the Froude dependence of the volume
of air Vbubble enclosed at pinch-off.

This process is clearly visible in Fig. 6.2. The volume of this bubble
Vbubble is found to be solely dependent on the Froude number, more over, it
is found to exhibit scaling law behavior with Froude. The scaling law for
the volume of the bubble observed in experiment and simulation is found
to be Vbubble ∝ Frλ, with λ = 0.78 (see Fig. 6.15a).
This is surprising, since for the impact of a liquid mass on a free surface
the volume of air entrained in the process scales with a different exponent
Vbubble ∝ Fr1.0 [7]. In the remainder of the section we will explain the scaling
of the air entrainment by the disk based on the findings of Section 6.3.1.

In Section 6.3.1 it was found that the axial length of the enclosed bubble
at pinch–off scales roughly as (zcoll−zdisk, coll)/h0 ≈ 1.10Fr1/2. The prefactor
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Figure 6.15: (a) The volume of the bubble Vbubble entrained during the
collapse of the cavity from experiments (colored symbols) and simulations
(black open circles) as a function of the Froude number. The red line indi-
cates a power–law of Vbubble/h3

0 ∝ Fr0.78.
(b) The entrained volume Vbubble is normalized by h3

0Fr1/2, since accord-
ing to Section 6.3.1 the axial length scale of the bubble scales roughly as
zdisk, coll−zcoll ∝ h0Fr1/2. In the same plot also the effective radius heff and
the maximum radius hmax, coll of the entrained air bubble at the moment of
pinch–off are given as a function of Froude. Since the bubble volume Vbubble

exhibits scaling close to ∝ Fr0.78, all shown quantities follow a scaling close
to ∝ Fr0.14 (red dashed line).
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of 1.10 should be thought of as an average of the weakly Froude dependent
prefactor

√
αexpaβexpa + αctraβctra. The axial length zcoll − zdisk, coll of the

enclosed bubble can obviously not solely account for the observed volumetric
Froude scaling with exponent λ = 0.78. The radial length scale hrad of the
bubble should therefore also scale with Fr. From the following expression,

Vbubble ∝ (zdisk, coll − zcoll) = Fr0.78h2
rad ∝ Fr0.78 = Fr1/2 · (Fr0.14)2 , (6.18)

it is clear that hrad ∝ Fr0.14 in order to reproduce the correct scaling for
Vbubble. The equivalent of hrad, namely the effective, or average, radius heff

of the bubble can be computed directly from the experimental and numerical
cavity profiles without any assumption of the axial length scale by,

h2
eff =

1

(zdisk, coll − zcoll)

∫ zdisk, coll

zcoll

h2(z)dz . (6.19)

The magnitude of heff beyond h0 will in turn be dictated by the expansion
of the cavity. This expansion can be quantified by the maximal radius
of the bubble hmax, coll at the time of pinch–off. hmax, coll can be directly
observed from the cavity profile at the time of pinch–off, as the maximal
radius for a depth between zdisk, coll < z < zcoll.

In Fig. 6.15b we compare the scaling of Vbubble, heff , and
hmax, coll. We compensate Vbubble with the expected scaling behavior

zdisk, coll − zcoll ∝ h0Fr1/2 of its axial length scale. According to Eq. (6.18)
this would leave only the square of the radial length scale hrad, therefore
we take the square root of the compensated volume.
The scaling of both heff and hmax, coll is found to indeed closely follow the
behavior of the radial length scale hrad obtained by rescaling the volume of
the bubble (Vbubble/h3

0Fr1/2)1/2 (Fig. 6.15b). All of these three length scales
exhibit scaling close to the proposed ∝ Fr0.14. This means that the Froude
number scaling of the volume of air enclosed at the impact of a disk is set
by the Froude dependence of two length scales, namely the depth of closure
and the radial expansion of the cavity.

After the collapse of the void, the downward jet will pierce the enclosed
bubble and create a torroidal bubble which will trail a constant distance
behind the descending disk. The volumetric oscillations of the torroidal
bubble can be measured by imaging it directly or recording the radiating
acoustic signal with a hydrophone. Both measurement methods show that
the trailing bubble volumetrically oscillates. The natural frequency fm of
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the oscillations of a spherical bubble are given by the Minnaert formula,

fm =
1

2πhbubble

√

3σP0

ρ
, (6.20)

where hbubble and P0 denote respectively the radius of the bubble and the
surrounding pressure. Surprisingly, the bubble enclosed at the closure does
not oscillate at the Minneart frequency for a spherical bubble comprised of
the same volume. But the bubble oscillates at the Minneart frequency of a
spherical bubble at atmospheric pressure with a radius equal to that of the
disk hbubble = h0 [24]. This is illustrated for the case of a disk of h0 = 20
mm impacting at a constant velocity of 0.5 m/s, even though the bubble is
far from spherical it volumetrically oscillates at the frequency (175 Hz) of a
spherical bubble with radius hbubble = 20 mm.

6.3.4 Minimal Neck Radius

For the local behavior of the cavity at pinch-off, one has to discriminate
between the behavior of the neck at the depth of closure hcoll(t) and the
dynamics of the minimal neck radius hmin(t). The corresponding depth
at which hmin is observed, zmin(t), is not a constant and varies until in
the final stage of the pinch-off it coincides with the closure depth zcoll. In
Chapter 5 the difference between hcoll and hmin was shortly addressed, but
in this section we will quantify the dynamics of hmin.

The way in which the depth of the minimal radius zmin approaches the
depth of closure zcoll can be deduced from Eq. (6.1) in the following fashion.
To approximate the cavity shape, we will assume that the shape of the cavity
is mainly determined by the expansion and contraction phases (see Fig. 6.8).
In Section 6.3.1 the expansion phase was found to end at

t̂max = αexpaβexpa(h0V )/(gz) , (6.21)

if t̂ = t − treach. Using Eq. (6.5), also the expanded cavity radius at which
the expansion halts can be found,

hmax = h0

√

1 +
(αexpaV )2

gz
βexpa . (6.22)

As is shown in Fig. 6.8, the time t̂max and the radial expansion hmax are the
initial conditions for the second phase, the contraction, which will mainly de-
termine the shape of the cavity. Using these initial conditions with Eq. (6.5),
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Figure 6.16: The graph shows the measured acoustic pressure Pacoustic in
arbitrary units during the impact event of a disk of radius h0 = 20 mm
at a velocity V = 0.5 m/s. The boxes in the graph show the exposure
time of the respective frames (at t = 0.13, 0.14, and 0.15 s) indicated by
the arrows. Pacoustic is seen to oscillate at a 175 Hz after pinch-off, this
frequency corresponds to the natural frequency (Minneart frequency) of a
spherical bubble with a 20 mm radius. The hydrophone used to record the
acoustic pressure can be seen in the upper left corner of the snapshots.
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Figure 6.17: (a) The difference between the depth of the minimal radius
zmin and the depth of closure zcoll of the cavity as a function of the time till
collapse for different Froude numbers. The data is obtained by the boundary
integral simulation from when the minimal radius equaled the disk radius
h0. (b) Shows a doubly logarithmic plot of the same data as (a), only now
zmin−zcoll is compensated by τ in order to reveal the theoretically predicted
scaling of zmin − zcoll ∝ τ as a horizontal slope. The jumps in the data are
a result of the regridding routine in our boundary integral simulation and
have no physical meaning.

the dynamics of h(z, t̂ ) in the contraction phase can be written as,

h(z, t̂ )2 = − gz

βctra
t̂ 2+2αexpa

βexpa

βctra
h0V t̂+h2

0

[

1 + α2
expa

βexpa

βctra

βctra − βexpa

gz
V 2

]

.

(6.23)
Here, t̂ = 0 corresponds to the time that the disk passes depth z. For
βexpa = βctra = −1, this result is identical to the one obtained by [10]. If
we take the time the disk needs to reach a certain depth into consideration,
we can obtain the shape of the cavity over the whole time by substituting
t̂ = t − z/V ,

h(z, t)2 = − gz

βctra
(t − z/V )2 + 2αexpa

βexpa

βctra
h0V (t − z/V )

+h2
0

[

1 + α2
expa

βexpa

βctra

βctra − βexpa

gz
V 2

]

. (6.24)

From this void shape the depth of the minimal radius zmin is obtained by
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computing dh/dz = 0, which gives

3
( z

V

)2
−4
( z

V

)

t+t2+αexpaβexpa
h0

g

[

2 + αexpa
(βctra − βexpa)h0

g

(
V

z

)2
]

= 0 ,

(6.25)
Under the assumption of zmin close to the depth of closure, z2 ≈ z2

coll =
(αexpaβexpa + αctraβctra)Frh2

0, and using α2
expaβexpa = α2

ctraβctra (cf. Sec-
tion 6.3.1) we find

αexpa
(βctra − βexpa)h0

g

(
V

zcoll

)2

≈ 1 − ζ

ζ +
√

ζ
, with ζ =

βexpa

βctra
. (6.26)

This quantity is found from numerical fits like those in Fig. 6.12a to be
0.36 (ζ = 0.54) for a Froude number of 3.4, 0.40 (ζ = 0.51) for Fr = 10.2,
and 0.36 (ζ = 0.54) at the considerable Froude number of 200. Therefore
we neglect this second term in the brackets of Eq. (6.25) and can solve the
equality to find

zmin =
1

3
tV

(

2 −
√

1 − 6
αexpaβexpa

gt2
h0

)

. (6.27)

From this result the linear dependence of zmin on time should be
noted. Using this dependence of zmin(t) = c t and the definition
zmin(tcoll) = zcoll = c tcoll, we find zcoll − zmin(t) = c (tcoll − t). This
scaling is indeed immediately clear for high Froude number (Fr=200)
from Fig. 6.17a. The compensated doubly logarithmic plot of Fig. 6.17b
reveals that also Fr = 3.4, 5.1, and 10.2 exhibit a scaling of zmin close to
(zmin(t) − zcoll)/(tcoll − t) ∝ c.

The scaling for zmin is observed close to pinch–off in the collapse
regime (see Fig. 6.8), however the theoretical description of this scaling
is deduced from Eq. (6.5) which holds for the expansion and contrac-
tion phases (see Fig. 6.8). This is not a contradiction, since Eq. (6.8)
for the collapse regime is an approximation of Eq. (6.5), so even near
pinch off, the solutions of both equations are remarkably close. The
cross-over between the two regimes was for convenience chosen at h = h0,
but Eq. (6.5) captures the cavity dynamics well, far into the collapse regime.

As the pinch-off is approached, not only the depth of the minimal radius
zmin converges to the depth of closure zcoll, but naturally also the minimal
radius itself hmin approaches the radius at the depth of closure hcoll as can



6.3. MODEL 91

be seen in Fig. 6.18a. Therefore close to pinch–off, hmin ≈ hcoll, which is an
important observation, since the radial dynamics of hcoll can be described
by Eq. (6.1) as was seen in Chapter 5, whereas the same description does
not hold for hmin as it is not observed at a constant depth z. In Fig. 6.18a,
the relative difference between hmin and hcoll is seen to be smaller for
increasing Froude number due to the cavity taking a more cylindrical shape
at higher Froude number.

The approach of hmin to hcoll can in fact be deduced from the cavity
profile. The local shape of the void at the minimal neck radius was found
in Chapter 5 to be parabolic. Thus we can capture the shape of the profile
in axial direction by the radius of curvature R (see Fig. 6.19). Since the
approach of the depth of the minimal radius zmin to the depth of closure
zcoll is governed by a power law of time, the approach of hmin to hcoll can
also be described by a power law of time. At the minimal radius, one can
define the radius of curvature R in the axial direction as following ,

1/R(t) = d2r/dz2|z=zmin , (6.28)

and if the shape of the interface can be taken to be locally parabolic, this
implies

r = (δz)2/R(t) + hmin(t) , with δz = z − zmin(t) . (6.29)

If we take the closure depth as reference, this equation can be rewritten,

hcoll − hmin(t) = (zcoll − zmin)2/R(t) . (6.30)

In Chapter 5 the radius of curvature R was found to be a power law of
the time. In Fig. 5.2a the R ∝ ταR behavior is illustrated. In the same
chapter in Fig. 5.2d the exponent αR was observed to be dependent on
Froude. So combining these findings with the linear time dynamics for
zcoll − zmin ∝ τ , we find from the geometrical considerations of Eq. (6.30)
that hmin approaches hcoll as hcoll − hmin ∝ τ2−αR .
This scaling is indeed readily observed in Fig. 6.18b for intermediate Froude
numbers, however the lower and higher Froude numbers of 3.4 and 200 seem
to deviate from this scaling due to small deviations of the proposed scaling of
zcoll − zmin ∝ τ which are observed for these Froude numbers in Fig. 6.17b.
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Figure 6.18: (a) The relative difference of the minimal radius hmin and the
radius at the closure depth hcoll of the cavity as a function of time for differ-
ent Froude numbers. This relative difference is smaller for increasing Froude
number as the cavity becomes more cylindrical. (b) Shows a doubly logarith-
mic plot of the same data as (a), only now hcoll−hmin is compensated by τ2

to reveal the resultant scaling with τ−αR . The scaling exponent of the radius
of curvature αR is dependent on the froude number and indicated by the red
lines for the different Froude numbers (α(Fr=3.4)R = 0.29; α(Fr=5.1)R =
0.32; α(Fr=10.2)R = 0.33; andα(Fr=200)R = 0.40)). The jumps in the data
are a result of the regridding routine in our boundary integral simulation
and of no physical meaning.

Figure 6.19: The radius of curvature R(t) of the void profile determined at
the depth zmin(t) of the minimum neck radius hmin(t).
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Figure 6.20: The profiles of the void obtained by experiments for h0 = 30
mm and V = 1.0 m/s (Fr = 3.4). (a) Void profile obtained at different
instances in time. (b) Void profile in which the radial and axial coordinates
were rescaled with the powerlaws of hcoll(t) and

√

hcoll(t)R(t) respectively.
Here, the numerically determined power–laws were used for the neck radius
h(τ) and the radius of curvature R(τ) (see main text).

6.3.5 Cavity shape at pinch-off

We now turn to the time evolution of the free-surface profile close to
pinch–off. Previously, in Chapter 5 we found a strong dependence of the
pinch–off process on initial conditions, in our case represented by the
Froude number. Due to the different dependence of the exponent of the
power–law for hcoll and R the void collapse was found to be not self–similar.
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In other words, it was not possible to collapse the free surface profiles
at different times onto a single shape using a single time dependent and
Froude–independent length-scale. In this section we will elaborate on how
the cavity shape depends on the Froude number, close to pinch–off.

If the pinch–off would be self-similar, the free-surface profiles at different
times (cf. Fig. 6.20a) would superpose when scaled by any characteristic
length, e.g., the neck radius at closure depth hcoll(t). As was discussed in
the previous section, the depth of minimum radius zmin increases somewhat
as the collapse progresses and it is therefore necessary to translate the
profiles in the vertical direction so as to match the position of the minimum
radius point before attempting this operation. Even if this is done, the
result fails to collapse the void profiles onto a single shape when using a
single time–dependent length-scale.

To characterize the free-surface shapes near the minimum point, one
thus needs not only hcoll(t), but also a second length-scale, the radius of
curvature R(t) in the vertical plane (see Fig. 6.2 and Fig. 6.19). As was
discussed in the previous chapter, both the time-evolution of hcoll and R
were found to follow a power law of time (hcoll = hcoll,0τ

αh and R = R0τ
αR ,

see also Fig. 5.2a). This makes it possible to rescale the experimentally
obtained void profiles of Fig. 6.20a onto a single shape. When the radial
dimension r is scaled by hcoll, it follows from Eq. (6.29) that the axial
dimension z should be scaled by

√
hcollR. If this is undertaken, the

profiles do collapse onto a single curve as can be seen in Fig. 6.20b. The
collapse of the profiles does not only signal that their shape is very close
to parabolic, but again visualizes the statement from Chapter 5, that
the collapse is self-similar of the second kind [25], since the radial and
axial coordinates are rescaled by power laws of time with different exponents.

The recent findings by [26] and [27] indicate that the scaling laws pre-
sented for hcoll and R have an exponent which slowly varies with time. Our
findings so far cannot confirm or disprove this theory, since our experiments
and boundary integral simulations do not have sufficient temporal range to
find such small deviations in the exponent. To escape the limitation of the
experimental range set by the viscosity, surface tension, and air, the exper-
iment should be scaled up to an unrealistic size (a container size of 40000
meters) to match the 10 decades in time presented in the numerical calcu-
lations of [27].
Of course our findings do have a clear dependence of the scaling exponents on
the Froude number. Even though the scaling exponents we observe, should
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be viewed as time averaged in this context, it is possible to derive the con-
stant in the exponent set by the initial condition in [27] from Fig. 5.2d.

6.4 Conclusions

In this article we investigate the purely gravitationally induced collapse
of a surface cavity created by the controlled impact of a disk on a water
surface. We find excellent agreement of the interface between experiments
and boundary integral simulations. Besides that also the flow surrounding
the cavity is faithfully reproduced in the simulations. The topology as well
as the magnitude of the flow in the simulations agree perfectly with the
flow obtained from experiment by particle image velocimetry.
In experiments it is found that a secondary air effect, the “surface seal”,
has a significant influence on the cavity shape at high Froude number.
Since the surface seal phenomenon (and its influence) is more pronounced
at higher impact velocities, it limits our experimental Froude number
range. However, by using boundary integral simulations in which the air
was intentionally excluded, we manage to remove this upper bound on our
observations.

Because the velocity of the impacting disk is a constant control parame-
ter in our experiments, a simple theoretical argument based on the collapse
of an infinite, hollow cylinder describes the key aspects of the transient
cavity shape.

The model accurately reproduces the dynamics of the cavity including
its maximal expansion and total collapse time. It also captures the scaling
for the depth of closure and the total depth of the cavity at pinch–off, and
predicts their ratio to be close to 2, where 2.1 is found in experiments and
simulation.
There is a close similarity of this description to the cavity dynamics
proposed by Ducleaux et al. [10], however, by introducing the asymmetry
between the radial expansion and collapse, we find a better agreement
between the theory and the radial dynamics of the cavity. A difference in the
flow surrounding the cavity is found to be responsible for the asymmetry.
Our approach is also conceptually different, as the authors of [10] take
αexpa to be independent of the Froude number, while we find it is weakly
dependent on Froude and that it is the quantity

√
αexpaβexpa + αctraβctra

which is of interest. In addition, our description includes the regime of the
collapse, which is solely driven by continuity.
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We find the volume of air entrained by the impact of the disk to scale as
∝ Fr0.78. This scaling is set by the Froude dependence of two length scales,
namely the axial length scale, distance between the pinch-off point and the
disk, and the radial expansion of the cavity.

The dynamics of the cavity radius at the depth of closure is thus well
described by theory. The minimal radius of the void is different from the
radius at closure depth, as the depth of the minimal radius only approaches
the closure depth in the limit of pinch–off. The parabolic approximation
captures this approach of the depth of the minimal radius to the eventual
pinch–off depth, which in simulation and theory is found to be linear with
time. The translation of the minimal radius is of interest, as this should be
accounted for in an approach as proposed by [26] and [27], since the axial
translation could introduce non-universal behavior for the pinch–off after
the impact of a disk.
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Chapter 7

The tubular jet‡

A vertical cylindrical tube is partially immersed in a water-filled container
and pressurized to lower the fluid level inside the tube. As reported by
Lorenceau et al. [1], a sudden release of the pressure in the tube creates a
singularity on top of the rising free surface: At the very beginning of the pro-
cess a jet emerges at the center of the surface, the strength of which strongly
depends on the initial shape of the meniscus. Here, the time-evolution of
the complex shape of the free surface and the flow around the cylindrical
tube are analyzed using high-speed imaging, particle image velocimetry, and
numerical simulations. The tubular jet is found to be created by the follow-
ing series of events, which eventually lead to the flow focussing at the tube’s
center: A circular surface wave, produced by the funnelling of flow into the
pipe, is pushed inwards by the radial flow directly underneath the surface.
As the wave moves inward and eventually collapses at the center of the tube,
a mound of fluid grows in the center due to the converging flow in the bulk.
This converging flow continues to feed the jet after the circular wave has
collapsed. The singularity of the wave collapse manifests itself in the initial
sharp tip of the jet. With this, all of the above events are traced back to a
single origin: The convergence of the flow as it enters into the tube.

7.1 Introduction

Liquid jets emerge when a relatively large amount of kinetic energy is
imparted onto a small mass of liquid near a free surface. In this paper we
will concentrate on the mechanism that produces the particularly intrigu-
ing ‘tubular jet’.

‡See also: Raymond Bergmann, Erik de Jong, Jean-Baptiste Choimet, Devaraj van der
Meer, and Detlef Lohse, The tubular jet, to be submitted to J. Fluid Mech.
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Figure 7.1: (a) Schematic drawing of the tubular jet setup, showing the
main parameters of the experiment. Left: initial situation (t < t0); right:
during the rise of the column (t > t0). (b) The experimental setup in
the laboratory with its main components labelled. 1: Argon ion laser; 2:
mirrors; 3: cylindrical lenses; 4: tank; 5: tube; 6: camera.
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Figure 7.2: Different types of jets for meniscus heights h = 14 mm (a), h =
0 mm (b), and h = -6 mm (c) in a pipe of inner radius R = 25 mm (see
Fig. 7.1 (a)). The dotted white line indicates the bottom of the tube and
the solid yellow line is the depth of the center of the initial meniscus;
h > 0 produces no jet, just a small mound of liquid in the center of the tube.
h ≈ 0 produces a sharp jet.
h < 0 produces a detached rising water column, from which a strong jet
erupts.
In all cases the distance L to the ground is much larger than R (L � R).
The depth of H is 200 mm.
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The tubular jet can be observed in a simple experiment in which a
liquid rushes upwards to fill an initially pressurized, vertical tube partially
immersed in a bath of fluid (see Fig. 7.1 (a)): As the liquid begins to
rise in the tube after the pressure release, in some cases a jet can be
seen to emerge from the center of the surface of the rising liquid column.
Figure 7.2 (b) shows a typical example of such an experiment. This tubular
jet was first reported by Lorenceau, Quéré, Ollitrault, and Clanet [1], in a
paper that mainly focussed on the oscillating motion of the liquid column
as a whole. Although the authors discussed some of the jet’s properties, it
remained unclear what the driving and focussing mechanisms for this jet are.

Mechanisms to focus momentum into a liquid jet are known to occur in
great variety. Examples are the jet produced by the printhead of an inkjet
printer, where a pressure wave in an open-ended channel is focussed on
the free surface at the nozzle [2–4], or the jetting in a glass of champagne,
where the surface tension stresses focus on the base of an unstable cavity
at the surface and are released in a liquid jet [5, 6]. Also the jets produced
by armor piercing weapons have been studied in detail [7]. In this case the
focussing is found to be purely geometrical and the driving is provided by
an explosive chemical reaction.
The jetting phenomena however that are closely related to the tubular
jet are those created by what could be best described as geometrical flow
focussing. An example is the collapse of a surface cavity formed by the
impact of a droplet or object onto a fluid surface. Such a cavity collapses
under the influence of hydrostatic pressure and a pressure singularity
occurs as the sides of the cavity collide onto each other [8–11], which is
subsequently released by the formation of an upward and a downward
jet. A similar void collapse is even observed in granular materials [12–14],
when a steel ball impacts on a bed of very fine, loose sand. After the “hy-
drostatic” void collapse, a jet of sand shoots up- and another one downward.

In this paper we will show that the origin of the tubular jet is similar
to the geometrical flow focussing examples discussed previously, but with
the considerable difference that the focussing geometry is now not provided
by the topology of the free surface alone, but is in essence due to the tube
wall partly obstructing the flow. Another distinct feature of the tubular
jet is that we find the tubular jet to reflect the interplay of several flow
focussing events instead of a single mechanism like was the case in all the
aforementioned jetting phenomena.
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In Section 7.2 we introduce the experiment and briefly discuss the rel-
evant observations reported by Lorenceau et al, which serves as a starting
point for the present investigation. Then in Section 7.3 we proceed to discuss
our own experimental setup together with the experimental considerations.
After this, in Section 7.4, we present results from particle image velocimetry
experiments on the formation and closure of a surface cavity which precedes
the jet eruption. In Section 7.5 we investigate the role of radial flow on the
jet eruption by comparing three different experimental configurations. To
further support our interpretation of the results, numerical potential flow
calculations of the jet formation is presented in Section 7.6. In the conclud-
ing Section 7.7 we summarize our findings.

7.2 Dynamics of a liquid column

When the overpressure inside a circular tube of inner radius R is released
and suddenly drops to the ambient level in the tank, the water column rises
freely from its initial level h to the (eventual) equilibrium level at H (both
measured with respect to the bottom of the tube, see Fig. 7.1 (a)). The
initial height of the water column h is measured at the center of the tube
and the depth of immersion H is the distance from the bottom of the tube
to the ambient water level. Lorenceau et al. [1] derived expressions for the
liquid column height zcolumn(t) as a function of time by describing the rising
liquid column in the tube as an oscillator with a continuously varying mass.
For the initial rise in the time interval relevant for the development of the
tubular jet (t � 6

√

H/g), zcolumn(t) was found to be linear in time after
a short period of initial acceleration (see Fig. 7.4 (a)). The constant rise
velocity of the column was found to be

vcolumn =
dzcolumn

dt
=
√

gH , (7.1)

with g the gravitational acceleration. It is stressed by the authors of [1]
that all derivations hold only for H � R due to the inclusion of entrance
effects (dissipation by eddies).

As one starts with an initially empty tube, one would start off with a
singularity, as the mass of the liquid column mcolumn(t) ∝ zcolumn(t) is 0
at t0. This was recognized as an unphysical feature of the model, since
there is always a mass of liquid underneath the tube entrance that must be
accelerated. An entrance length z0 was defined as a measure of this added
mass at the tube entrance, giving mcolumn(t) ∝ zcolumn(t)+ z0. The authors
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then proceeded to derive an equation to describe the initial acceleration
stage of the rise and found

zcolumn(t) ≈ h +
gHt2

2(h + z0)
, (7.2)

which is valid for the very first instants of the rise, when t
√

gH � h + z0

(see Fig. 7.4 (a)). The entrance length z0 was found to be of the order of
the inner radius of the tube R and not to depend on h.
calculated

It should be stressed that the above relations pertain only to the motion
of the liquid column as a whole, and do not capture the motion of the jet
itself. The authors did however make the following observations of the
tubular jet: The maximum height reached by the jet was found to depend
strongly on the initial level of the liquid in the column h; note that h will
have negative values for a meniscus bulging out of the tube and positive
values when the air/liquid interface is located inside the tube. The tubular
jet was found not to form at all for positive values of h, in this case only a
small mound of liquid has been observed at the interface, and for negative
h, a strong increase in the height of the jet was found as h decreased. It
was also stated that the jet forms after a short, but significant, delay of
order t = R/

√
gH.

Mention is made of the existence of a ‘liquid crater’ on the surface of
the rising column. In Fig. 7.3 (b) such a cavity can be clearly seen as a
black ring due to the refraction of light through the curved shape of its
rim. At the beginning of the rise, this circular cavity forms and closes onto
itself. The propagation speed of the rim of this cavity was determined to be
constant and the time needed to close the cavity was found to be equal to
the time delay before jet eruption. When the tubular jet was absent, e.g. in
the case of positive h, also the rim was not observed. The hypothesis of the
authors of [1] was that the rim is related to a circular vortex which remains
close to the entrance as the water flows into the tube. The objective of this
paper is to check this hypothesis and, more generally, to shed light onto the
formation and development of the jet.

7.3 Experiment

A schematic drawing and a picture of the setup we used for the investigation
of the tubular jet can be found in Fig. 7.1 (a) and (b), respectively. A
vertical, cylindrical perspex tube of inner radius R = 25 mm is partially
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Figure 7.3: Top: Side view of the rim closure. Bottom: Rim closure seen
from below. (bottom series similar to images in [1]). The time between
consecutive frames is 6 ms and for both series the experimental conditions
are: R = 25 mm, L � R, H = 300 mm, and h = 0 mm.

submerged to a depth H in a glass tank (dimensions 380 mm×780 mm×400
mm) which is filled up to a depth H + L with demineralized water. L is the
distance from the bottom of the tube to the bottom of the tank. Since all
experiments discussed in this paper were performed with H between 0.025
and 0.35 meters, typical velocities for the rising water level are in the order
of

√
gH ≈ 1 m/s.

The top of the tube is connected to a compressed air line in order to
control the initial meniscus depth h by pressurizing the air inside the
tube. The top of the tube is also connected to an electromagnetic valve
which, when opened, causes the pressure inside the tube to instantly drop
to the ambient level: The diameter of the outlet hose and valve opening
is large enough such that the air flow is hardly restricted as it leaves the tube.

The Reynolds number associated with pipe flow in the tube is

Re =
2R

√
gH

ν
, (7.3)

where ν is the kinematic viscosity of water. Given the tube depths H of our
experiments, the Reynolds number ranges between 2.5 · 104 and 9 · 104 and
viscous effects in the flow can therefore be neglected for the main flow in the
tube: The flow is dominated by gravity and inertia. Pipe flow is generally
turbulent for Re > 4000, so this system would be well within the turbulent
domain. However, the flow is certainly not fully developed as it just enters
the tube. For turbulent pipe flow, the entrance length is given by [15]

le/2R = 4.4(Re)1/6 , (7.4)

from which we calculate that for our case le is of the order of 1 m, which
provides a typical time scale for the flow development of about one second.



106 CHAPTER 7. THE TUBULAR JET

The turbulent flow suggested by the Reynolds number is clearly not yet
developed on the time and length scales we are considering, namely those
for the eruption of the tubular jet.

After the initial acceleration of the water column the Weber and Froude
number associated with the pipe flow are given by We = ρgHR/σ and
Fr = H/R. Here ρ denotes the density of water and σ the surface tension
at the interface. For our experiments the effect of surface tension can be
neglected on the large scale of the tube, since the Weber number ranges
between 9 · 102 and 1.2 · 104. The Froude number ranges between 1 and 14,
signaling that the pipe flow is indeed dominated by a balance of gravity
and inertia.

As discussed in Section 7.2, we find that the initial depth of the center
of the gas/liquid interface h, in other words the meniscus, has a profound
effect on the jet. Fig. 7.4 (b) shows the strong dependence of the initial jet
velocity vjet on h.
This initial jet velocity is measured through highspeed imaging∗ in the first
5 ms after the jet erupts from the free surface (see Fig 7.4 (a)). Like the
column velocity vcolumn, vjet is found to scale with

√
gH, making it possible

to collapse all velocity measurements for different H onto a single curve in
Fig. 7.4 (b).

The influence of h can be classified into three different regimes:

� For an initial meniscus sufficiently inside the tube (h > 0, Fig. 7.2 (a)),
the jet speed is of order

√
gH, in other words, vjet ≈ vcolumn. This

corresponds to the horizontal asymptotic value of 1 in Fig. 7.4 (b).
There is no jet, only a mound on the water surface. The rim seen in
Fig. 7.3 (b) is also absent here.

� For an initial meniscus flush with the bottom of the tube (h ≈ 0,
Fig. 7.2 (b)), a rim is observed and a jet erupts shortly after the
acceleration stage of the water column rise.

� For an initial meniscus bulging sufficiently out of the tube (h < 0,
Fig. 7.2 (c)), the flow at the tube entrance cannot follow the 90 degree

∗Outside of the tank a high speed camera is set up approximately level with the bottom
of the tube, perpendicular to the glass sidewall of the tank. For the imaging of the
experiment, a Kodak CR2000 CCD camera is used at a frame rate of 1000 frames per
second and a resolution of 512x384 pixels. Backlighting of the tube is achieved by a
halogen lamp with a diffusive plate placed at the opposite side of the tank to obtain
typical images like those of Fig. 7.2 (a).
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corner of the tube’s inner edge, causing the rising column to separate
from the inside wall of the tube. A very strong jet is formed at the top
of this detached water column, contributing to the steep rise in the jet
velocity plot Fig. 7.4 (b) for negative h. By softening the edge of the
tube the separation can be partly suppressed.

In the remainder of this paper we will focus on experiments with the
initial meniscus being flush with the bottom of the tube (h = 0), since in
this case we both have a clear tubular jet and we are unhindered by the
possible separation of the inflowing liquid from the inner wall of the tube as
is common for h < 0. Looking at this regime will not limit the generality
of our observations on the tubular jet, but will facilitate the comparison
between the different flow configurations introduced in the later sections of
this paper.

7.4 Formation and closure of the rim

Although the rim (Fig. 7.3) is observed whenever the tubular jet forms and
the jet eruption and rim closure are always simultaneous, it is not a priori
clear that this rim is a prerequisite for jet eruption. To investigate this,
we will try to unravel the origin and nature of this rim by answering the
following questions:

� Is the rim due to the initial capillary uprise of the meniscus detaching
and travelling over the free surface?

� Does the rim propagate like a capillary or gravitational surface wave?

� Do entrance vortices cause the rim to form and propagate?

7.4.1 Is the rim due to the initial capillary uprise of the

meniscus detaching and travelling over the free sur-

face?

Due to the wetting properties of perspex, the initial air/water interface
inside the tube curves up, when the distance to the inner wall is below the
capillary length. As the gas pressure inside the tube is released and the
interface starts to accelerate upwards, this initial curvature of the interface
could detach and travel over the surface as the rim.

To check wether the rim closure is indeed simply an inward propagation
of the capillary uprise, we applied a small amount of vaseline to the tube
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Figure 7.4: (a) The height of the water level in the tube zcolumn (blue
diamonds) and the height of the jet (red dots) as a function of the time
that has passed since the release of the overpressure in the tube for the
conditions R = 25 mm, L � R, H = 150 mm, and h = 0 mm. The data
we obtained by highspeed imaging at 1000 frames per second. The vertical
green line indicates the moment of the jet eruption. Since the jet height is
defined as the height of the center of the interface, it can exceed the column
height before the actual moment of jet eruption, due to the rising rim. To
determine the column and jet speed, vcolumn and vjet respectively, a linear
fit is made to the column data (blue line) after the instant of the jet eruption
and a linear fit to the jet height (red line) during the first 5 ms of the jet’s
existence.
(b) The jet velocity vjet non-dimensionalized by the velocity of the rising
column

√
gH as a function of the initial meniscus depth h normalized by the

radius of the tube R for the conditions of R = 25 mm, L � R, and H has
three different values (blue triangles: H = 150 mm, red circles: H = 200
mm, yellow crosses: H = 250 mm). vjet was obtained using the procedure
described in (a). The dashed black line indicates vjet/

√
gH = 1.
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Figure 7.5: A series of images of the rim closure viewed from above at an
angle for the conditions of R = 25 mm, L � R, H = 200 mm, and h = 0
mm. The rim moves as a wall of fluid over the undisturbed inner region
of the interface, like a hydraulic jump [16]. The jet is initiated when the
bottom of the fluid wall reaches the center. Time between images is 1 ms.

entrance. This alters the contact angle between the interface and the tube,
and will curve the interface down near the inner wall of the tube. However,
using such a hydrophobic tube entrance, the rim still formed and collapsed
at the same constant velocity as was found for the regular case. The rim
can therefore not be attributed to the detachment and propagation of the
capillary uprise of the liquid at the wall.
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7.4.2 Does the rim propagate like a capillary or gravitational

surface wave?

The nature of the rim could possibly reveal the mechanism by which it
is produced. Therefore we made direct observations of the rim with a
highspeed camera, to investigate whether it can be attributed to an initial
disturbance which travels as a capillary or gravitational surface wave
towards the axis of the tube.

Based on Fig. 7.3 it seems plausible to presume that the wave is a
capillary or gravitational surface wave, but in these recordings, the camera
was positioned horizontally and the fluid interface itself obscures largely
what is happening at the center of the fluid cavity. So, in order to make
more revealing recordings, the high speed camera is now mounted at an
angle above the setup to allow us to view what actually happens inside the
cavity as it collapses. The frames of Fig. 7.5 show these tilted recordings.
The first striking observation from Fig. 7.5 is that the rim moves into a
flat inner region of the interface with a steep front, more reminiscent of a
hydraulic jump or bore instead of the smooth front expected for a surface
wave. The second observation is that in the first two frames of Fig. 7.5
the rim, roughly 1 cm or larger, is preceded by small capillary waves with
wavelengths λ smaller than 3 mm. These waves are observed from the start
of the column rise, but are ‘overtaken’ by the rim (third frame). This also
contradicts the wave being a capillary or gravitational wave, since these
smaller capillary waves should propagate faster than a 1 cm gravitational
wave (see Appendix A).

Based on these two observations on the shape and propagation velocity
of the rim, it can be concluded that the rim is not propelled by gravitational
or surface tension forces. There must therefore be a different propulsion
mechanism for the rim.

7.4.3 PIV experiments: Do entrance vortices cause the rim

to form and propagate?

Since the rim does not propagate like a surface wave, could it be the vortex,
located at the entrance of the tube, driving it as was proposed by the
authors of [1]? As the column starts to rise, the entrance vortex could
deflect the fluid above it outwards, towards the wall of the tube, forming a
rim. This effect would weaken as the surface moves away from the entrance
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vortex, causing the rim to move inward. To investigate this possible effect of
the entrance vortex, high-speed Particle Image Velocimetry (PIV) is applied.

To perform the PIV measurements, the fluid is seeded with small
Dantec Dynamics polyamid tracer particles of radius 25 µm and density
1030 kg/m3 that will follow the flow. A laser sheet shines through the fluid,
creating an illuminated plane inside the flow. The light scattered by the
tracer particles is captured by a high speed camera at a frame rate of 1000
frames per second and a resolution of 1280x512 pixels (see Fig. 7.1 (b)).
This series of images is then correlated by multipass algorithms, using
DaVis PIV software by LaVision, in order to determine the flow field in
the liquid over a two dimensional area for extended periods of time. The
correlation was performed in three passes at sub-pixel accuracy, using 64x64
pixels, 32x32 pixels and 16x16 pixels interrogation windows. The windows
overlap by 50%, resulting in one velocity vector every 8x8 pixels.

For the illumination of the high speed PIV measurements we use a
Spectra Physics Stabilite 2017 Argon Ion laser, which outputs continuously
at a wavelength of 514.5 nm. Using this continuous laser, the frame rate
of the recording camera determines the number of field measurements
per second. Power output is an important consideration, because short
exposure times are preferable, to prevent motion blurring of the particle
images. Using the laser at its full 6 Watt power output allowed for an
exposure time of 0.1 ms. With a typical flow velocity of 1 m/s and an
image scaling of 10 pixels/mm the particle images will not move more
than one pixel during the exposure, so this blurring effect is minimal. The
laser beam is converted into a light sheet by means of three cylindrical
lenses. In the experimental setup, the light sheet is oriented vertically, in
order to illuminate the flow from below (Fig. 7.1 (b)). We found this to
be preferable as compared to a horizontally oriented light sheet shining
through the side of the tube, because a horizontally aligned light sheet is
reflected many times inside the tube, causing a bright glare near the sides.
Moreover, the main flow direction is oriented vertically, so a horizontally
oriented light sheet would have to be of considerable width (∼ 100 mm) to
fully illuminate the area of interest.

From these high speed PIV measurements one obtains typical images
of the velocity field like Fig. 7.6. In this figure the image of the original
high speed recording is overlaid with the obtained PIV results. The PIV
software also produces velocity vectors at the free surface and even inside
the jet, but these vectors are highly inaccurate, due to the large optical
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Figure 7.6: The time is t = 50 ms after the pressure release and at that
time the column has reached a height of about 40 mm and the jet has just
erupted. The experimental conditions are H = 150, L � R, and h = 0
mm. The velocity field obtained by PIV overlaid on the original high speed
recording. For clarity, only one sixteenth of the measured vectors are shown
in (a) and one fourth in (b). The shaded area on the right depicts the tube
wall and the recirculation zone is indicated by the stream line originating at
the inner edge of the wall (dashed white line). The region of the vortex is
enlarged in (b).
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distortions caused by the curvature of the air/water interface and are thus
not shown.

A vortex is visible at the entrance of the tube in Fig. 7.6 (a) and
enlarged in Fig. 7.6 (b). The velocity gradients in the interior of this
vortex are large†, but can be resolved by our experimental setup. There
is however no need to do so, because only the edges of the vortex and not
its internal structure are of interest, since this is a measure of whether the
vortex is close enough to the free surface to produce the rim. The size of
the recirculation zone is indicated by the dashed white line which is the
stream line originating at the inner edge of the tube. During the rise of the
water column, the entrance vortex stretches in the radial r and the axial
z direction. However in the beginning, when the water column starts to
rise and the rim is formed, the vortex is still absent. Later, as the vortex is
fully developed like in Fig. 7.6, it lags considerably behind the column height.

Figure 7.7 (b) shows the vortex growth from a different perspective.
Here the radial flow velocity component vr at a certain distance 4z below
the rising interface Fig. 7.7 (a) is plotted as a color plot. The position at
which the profiles are monitored is moving upward with the free surface
at a fixed distance 4z = 4 mm. The blue colors represent negative vr

(directed towards the r = 0 -axis). We observe a strong inward directed
radial flow near the white line, which indicates the radial position of the
rim, assuming a constant velocity of closure. The white dot indicates the
moment of jet eruption. The radial flow near the closing rim originates at
the pipe’s bottom edge and spreads into and up the pipe over time. The
rim seems to be ‘pushed along’ by this inward flow directly beneath it.
The rim propagation can therefore not be described purely as a travelling
cylindrical wave; bulk flow effects dictate its movement.

A second observation is that the region of outward directed flow is po-
sitioned far away from the rim and only develops after the rim has passed.
The rim can therefore not be formed by the deflection of fluid towards the
pipe wall by the entrance vortex as hypothesized and dismissed before. It
seems that the vortex does not play any significant role in the creation or
propagation of the rim.

†A closer investigation of the vortex by PIV revealed velocity gradients ∆v/∆x as large
as 6 · 102 s−1.
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Figure 7.7: (a) schematically shows that the position at which the flow
velocity is monitored in (b) is moving upward with the free surface at a fixed
distance 4z. (b) shows the radial flow velocity component vr at a distance
4z = 4 mm below the rising interface. The radial velocity components
are plotted as a color plot. The blue colors represent negative vr (directed
towards the r = 0 -axis). We observe a strong inward directed radial flow
near the white line, which indicates the radial position of the rim. The white
dot indicates the moment of jet eruption. The radial flow near the closing
rim originates at the pipe’s bottom edge and spreads into and up the pipe
over time. The rim seems to be ‘pushed along’ by this focussing flow flow
directly beneath it. The focussed flow vanishes at the center of the tube r =
0 mm.
The region of outward directed flow, whose boundary is indicated by the
black solid curve of vr = 0, does not influence the rim closure as it is
positioned far away from the closing rim. R = 25 mm, L � R, H = 150
mm, and h = 0 mm.
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Figure 7.8: The velocity field obtained from PIV measurements at the pipe
entrance for H = 150 mm, 10 ms after the pressure release. The gray shaded
area on the right indicates the location of the pipe wall. R = 25 mm, L � R,
and h = 0 mm.

7.4.4 The origin of the rim

In the previous three subsections we have seen that the rim cannot be ex-
plained by the initial curvature of the meniscus, a capillary or gravitational
surface wave, nor the vortex at the entrance of the tube. So what can
explain the rim formation?
To answer this question we look at the development of the flow at the pipe
entrance in the initial instants of the column rise, since this is where the
radial flow ’pushing’ the rim seemed to originate.
Figure 7.8 shows the flow in the experiment at the pipe entrance 10 ms
after the pressure release. The data represents an average of 4 separate
PIV experiments. It is clear that there is a stronger inflow of fluid near
r = R on the time scale for the creation of the rim. For this depth H
of 150 mm the time scale on which the rim fully develops and starts
to move radially inward is 10 ms. The distance of the free surface to
the entrance of the pipe at that time is only 2 mm. The enhanced ax-
ial flow will thus influence the shape of the free surface and produce the rim.

We call this purely geometrical effect of the pipe wall forcing the axial
and radial flow into the pipe and necessarily speeding it up in the process the
funnelling effect. This enhancement of flow along the inner-edge of the pipe
might at first seem somewhat counter–intuitive. But even in a simplified
configuration with a stationary, radial flow, such an enhancement along the
pipe wall arises naturally, as will be show in Section 7.6.
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Figure 7.9: The bulk flow inside the tube. The gray shaded area on the
right is the pipe wall. vcolumn has been subtracted from the velocity data
obtained by PIV, so the yellow vectors indicate the flow relative to the bulk
column speed. The largest vector in the top right figure has a magnitude of
0.3 m/s; the vectors are scaled linearly. R = 25 mm, L � R, H = 150 mm,
and h = 0 mm.

7.5 Investigating the role of the radial flow

Due to symmetry, the radial component of the flow directly underneath
the free surface obviously must vanish at r = 0. It is conceivable that due
to continuity, this vanishing inward radial flow gives rise to a nonzero axial
flow on top of the main axial flow component vcolumn. This induced (extra)
axial flow would locally push up the interface.

To visualize this effect, the column velocity vcolumn is subtracted from
the results obtained by the PIV measurements. From Fig. 7.9, showing the
relative motion of the fluid to the bulk column motion, we clearly observe
the flow from the bulk into the jet for various times. In Fig. 7.9 it is clear
that, after the formation of the rim at t > 30 ms, the axial component of
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Figure 7.10: Three different types of flow situations. (a) normal flow, (b)
reduced radial flow, and (c) enhanced radial flow.

the flow is increased around r = 0 and the interface is pushed upwards in
the center of the tube. The mound we see in Figs. 7.3 and 7.5 is thus not
just the increasing amplitude of the inward travelling cylindrical wave, it
is also an effect of the radial flow beneath it. We also see that there is a
continuous flow of fluid from the bulk into the jet. This flow is strongest
before the eruption of the jet, when we see the rising mound on the interface.

To experimentally determine the influence of this effect we devised a
method to enhance and reduce the relative importance of the radial inflow
in the experiment. Reduced radial inflow is obtained by placing a second,
larger pipe around the first, thus locally blocking the flow in the radial
direction (Fig. 7.10 (b)). Enhanced radial inflow is achieved by simply
positioning the tube very close to the bottom, such that the axial inflow is
obstructed (Fig. 7.10 (c)). Both are discussed in more detail below.

Reduced radial inflow. By placing a second, larger pipe around the
entrance of the main pipe, the radial inflow into the tube is reduced
(Fig. 7.10 (b)). The second pipe (inner radius of Rs = 35 mm) extends
twice its radius below the main pipe’s entrance, so its entrance effects (e.g.,
entrance vortex) do not influence the flow into the main pipe. Since the
liquid still starts with a meniscus at the main pipe and the fluid is flowing
through a contraction at the main pipe’s entrance, there will still be a
certain amount of radial inflow, though strongly reduced with respect to
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the ‘normal’ situation.
Apart from the shape of the meniscus, this situation is similar to the case
of h � 0, if Rs ≈ R, where we already observed that neither a jet, nor a
rim is formed.

Enhanced radial inflow. Now the pipe entrance is placed very near
to the bottom of the tank, relatively enhancing the effect of the radial
inflow by blocking the inflow in the axial direction (Fig. 7.10(c)). Since
the entrance depth z0 is of order R, we must take L < R to significantly
increase the radial flow component.
The precise value for L suitable for this setup can be determined by
experimentally investigating the influence of L on the rise velocity of the
water level vcolumn and the jet velocity vjet. From the highspeed camera
recordings (see Section 7.3) we observe that the jet velocity is indeed
significantly affected by decreasing L below R. While the jet velocity
increases, the column velocity decreases for L < R. When L is decreased
below L = 1

5R for this setup, the rising water column detaches from the
inside of the pipe. Even though this detachment is generally seen for
h < 0, for such small values of L already for h = 0 the enhanced radial
flow does not follow the inner corner at the tube’s entrance any more .
This phenomenon would make quantification and comparison with other
experiments difficult. Therefore L = 2

5R (10 mm) was chosen as a suitable
value for the radially enhanced flow experiments, since its effect on the jet
speed is still considerable and detachment of the water column did not occur.

We will first discuss how the radial flow influences the rim, after which
the influence on the jet itself will be discussed. In the experiments the
strength of the radial inflow influences the shape of the cavity. The cavity
is deeper and the rim is steeper for the radially enhanced flow, whereas
the cavity is much less prevalent (though not completely absent) in the
case of the radially reduced flow (see Fig. 7.11). This is also reflected in
the flow field at the entrance of the tube. A strong ‘funnelling’ effect,
like previously observed in Fig. 7.8, can be seen to occur in the radially
enhanced experiment. In the case of the radial reduced flow this effect
seems to be, just like the rim, largely absent.

The propagation mechanism for the rim, the fluid flow directly under
the free surface, also exhibits a strong dependance on the radial flow
component. In the case of radially enhanced flow, the vr component
pushing the rim along is stronger compared to the normal flow situation
(Fig. 7.7 (b)). In the case of radial obstructed flow however, this mechanism
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Figure 7.11: Close up view of the closing rim for normal (top), radially
reduced (middle), and radially enhanced (bottom) flow, the rim is much
more pronounced for stronger radial flows. See text for the exact values of
the geometry. Time between images is ∆t = 6 ms for the top series, ∆t = 3
ms for the middle and bottom series. R = 25 mm, L � R, H = 175 mm,
and h = 0 mm; first image of each series at t = 15 ms.
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is observed to be considerably weakened. As a result, the rim propagates
at a slower velocity and closes much later than it does for the normal and
enhanced radial flow experiments, e.g., at a depth H of 175 mm, 57 ms
versus 36 ms.

These experiments thus underline our earlier observations about the
rim, namely as being created by the ‘funnelling’ effect at the entrance of
the tube and being pushed along by the inward radial flow directly under
the interface. Both effects become stronger by enhancing the radial flow
component in the entrance flow.

Now turning to the jet creation, the radially obstructed flow produces
much weaker jets. Due to the slower rim collapse, the jet also erupts
later when compared to the normal and radially enhanced case. The jets
produced by the radially enhanced flow are comparable in height to the
normal case, even though the total flow of liquid into the pipe is restricted
(the water column rises considerably slower).

In Fig. 7.12 (a) the ratio of the measured rise velocity vcolumn and the
expected rise velocity

√
gH is plotted against the immersion depth H/R

of the column. It is seen that the expected rise velocity is only reached
for the considerable depth of H > 10R in the case of the normal flow
configuration. The flow in the two altered setups is restricted to lower
values for vcolumn compared to the unaltered case. Therefore, for a better
comparison of the three different flow configurations, we normalized the jet
velocities by vcolumn instead of

√
gH in Fig. 7.12 (b). The radially enhanced

setup consistently produces the strongest jets, even though the total fluid
flux into the tube is restricted. The radially obstructed setup on the other
hand, produces weak jets. The normalized jet speeds seem to level off for
H > 10R (250 mm) and scale with vcolumn ∝ √

gH in this limit.

We conclude that enhancement of the radial flow strongly enhances the
erupting jet. The enhanced radial flow setup has a stronger radial flow and
collapse, and subsequently, a stronger axial flow feeding the jet after the rim
collapse. This is all in good agreement with the mechanism of rim and jet
formation outlined in the previous section.
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Figure 7.12: The influence of the radial flow on the jet and column velocities
(see Fig. 7.10). The radially reduced flow configuration (red stars) and
the radially enhanced flow configuration (green diamonds) compared to the
normal flow situation (blue triangles). (a) Column speed for the different
radial flows. Only as the depth H increases, vcolumn tends to

√
gH.

(b) vjet normalized by vcolumn. As the radial flow is enhanced the jet velocity
is found to be considerably larger as compared to vcolumn. For larger depth
H the ratio vjet/vcolumn tends to a constant. R = 25 mm, L � R, and
h = 0 mm.
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7.6 Potential flow analysis

To further support our findings and corroborate that (i) the funnelling ef-
fect is generic to the geometry and (ii) that vorticity indeed plays no role for
the creation of the tubular jet, we have performed a potential flow analysis.
In a first step we analyze the flow just after the release of the pressure in
the tube (Subsection 7.6.1), in the following subsections we will present a
full analysis of the problem (Subsections 7.6.2 and 7.6.3). For the second
investigation the exact geometry of the problem is taken into account, in-
cluding the moving free surface, making it necessary to solve the potential
numerically by means of a boundary integral simulation [17].

7.6.1 The funnelling effect

To confirm that the funnelling effect is indeed generic to the geometry (Sec-
tion 7.4.3), we performed a potential flow analysis of a simplified configura-
tion with a stationary, radial flow at the pipe entrance. In the introduction
the Reynolds number was said to be considerable and the funnelling effect
develops rapidly compared to the time scale for the development of vortic-
ity, so in good approximation, the initial flow can be described by potential
theory. The potential of the flow ϕ is solved analytically in Appendix B
for boundary conditions which are, albeit simplified, comparable to our ex-
periment (cf. Fig. 7.13 (a)). Figure 7.13 (b), (c), and (d) show the flow
and potential obtained for an inflow similar to the one in the experiments
reaching to a depth of order R below the tube (L = R). In Fig. 7.13 (b) and
(d), a clear enhancement of the axial flow at the pipe wall can be observed.
So even for this simplified and purely radially driven example the funnelling
effect arises naturally.

7.6.2 Boundary integral simulations

To verify that vorticity plays no role for the creation of the tubular jet,
we performed boundary integral calculations. Since the exact geometry of
the problem is now taken into account, including the moving free surface,
the same potential flow formulation of Appendix B is solved numerically.
The moving free surface is iteratively solved over time using the standard
kinematic and dynamic boundary conditions [18–21]. In Section 7.3 we
found that the initial state of the system, namely the meniscus, has a
profound effect on the tubular jet. So, as a prerequisite for obtaining
realistic simulation results, we first have to accurately capture this initial
condition.
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Figure 7.13: (a) The initial conditions for the flow potential ϕ, which mimics
the radial flow of our experiment. These boundary conditions assume a
constant radial inflow of strength V0 to a depth L below the tube (solid
arrows). The expected flow is drawn as dashed arrows.
(b) shows the potential and flow given by the configuration of figure (a).
The potential ϕ is obtained by Eq. (7.10) and is indicated by the isolines.
The flow direction and strength obtained by Eq. (7.11) and Eq. (7.12) are
given by the arrows.
(c) and (d) show the radial and axial flow component, vr and vz respectively,
at the entrance of the pipe (z = 0) obtained by Eq. (7.11) and Eq. (7.12)
for the flow configuration of figure (a). Clearly, the axial flow is enhanced
along the wall.
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In order to obtain the shape of the meniscus for the numerical calcula-
tions, we use the Young-Laplace equation [22] to describe the shape of the
liquid-gas interface in equilibrium,

Pwater − Pair =
σ

Rc
, (7.5)

where Pwater and Pair are the pressures at the air–water, σ is the surface ten-
sion, and Rc is the local radius of curvature of the interface. The hydrostatic
pressure in the water is defined as Pwater = ρg(H − z) and as long as the
surface is flat at r = 0 (this is the case for R sufficiently larger than the cap-
illary length), the air pressure inside the tube is given by Pair = ρg(H − h).
The air–water interface is represented as an axisymmetric surface described
by a revolution of the curve r(z). This curve has endpoints at [0, R] at the
inner wall of the pipe and [h, 0] on the z-axis. The radius of curvature at
any point (r, z) on such a surface is given by

1

Rc
=

d2r
dz2

[

1 +
(

dr
dz

)2
]3/2

+
1

r
[

1 +
(

dr
dz

)2
]1/2

. (7.6)

Combining Eq. (7.5) and Eq. (7.6) one obtains an ODE which must be solved
numerically using a shooting method, because the two boundary conditions
are defined at two different ends,
1. r(0) = R; the interface must meet the pipe’s inner edge,
2. r(h) = 0; the meniscus depth is h.
In this way a meniscus shape is obtained which is in excellent agreement with
the experimentally observed meniscus shape, as can be seen in Fig. 7.14.
This numerical meniscus shape will be used as the initial condition in our
boundary integral simulations.

7.6.3 Comparison between boundary integral simulations

and experiments

When comparing the boundary integral simulations to experiments under
the same conditions, including the same initial meniscus-shape and -depth,
we find the water column to rise more quickly in the numerical calculations
as compared to the experiments. In both cases the rise velocities dzcolumn/dt
tend to the same constant velocity, but the initial acceleration of the water
column in the numerical calculations is considerably higher. This difference
in acceleration could be due to a difference in the global flow structure,
because in the numerical calculations only the bottom wall of the tank is
taken into consideration and the side walls of the tank are neglected. These
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Figure 7.14: Comparison of the meniscus obtained by the shooting rou-
tine with the meniscus observed in the experiment. The numerical solution
(dashed yellow line) is overlaid on the left half of a photograph of the menis-
cus (h = −3.5 mm, R = 25 mm). The interface in the photograph is
illuminated by a laser sheet and can be seen in the right half.

side walls could be included in the calculations by introducing them as image
planes, and subsequently introducing four more tubes into the numerical
calculations, however this becomes numerically expensive and this three–
dimensional configuration would be hard to achieve in our axisymmetric
calculations.
The tubular jet however depends only on local flow structures, namely the
funnelling effect at the pipe entrance and continuity at the center of the
pipe. Therefore, we can simply compensate for the increased rising of the
water column and still find an excellent agreement between the numerical
calculations and the experiments, as is shown in Fig. 7.15. Also the time for
the eruption of the jet is faithfully reproduced in the numerics.
In the numerical calculations we observe the same funnelling effect along the
edge of the pipe generating the cavity, which is clearly visible in Fig. 7.15
(b) and (c). The propulsion of the rim by the radial flow is also observed,
including the rising of the center mound and eruption of the jet at exactly
the same time as compared to the experiment (Fig. 7.15 (d) and (e)). Since
vorticity is neglected in this potential flow calculation, we again conclude
that indeed vorticity does not influence any of the mechanisms leading to
the eruption of the tubular jet.
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Figure 7.15: The experiments (snapshots) overlaid by the numerical result
(yellow line) for the free surface at different instances in time. The tube
wall used for the numerical calculation is indicated by the gray shaded area.
The height of the numerically obtained free surface is adjusted to compen-
sate for the faster rising of the liquid column in our numerical calculations.
The shape and time evolution of the shape of the numerically obtained free
surface is shown without any adjustment. R = 25 mm, L � R, H = 300
mm, and h = 0 mm
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7.7 Conclusions

We investigated the origins of the tubular jet and found that the inward
radial flow strongly influences the strength and formation of the jet.
Several effects, all originating from the converging radial inflow, work
together to create the tubular jet. The results of high speed imaging, PIV
measurements, and simulations lead us to the following sequence of events:

Directly after the pressure in the tube is released, liquid is funnelled
into the pipe. If the meniscus is close enough to the bottom of the tube, the
axial component of the flow pushes the perimeter of the interface upwards
forming a rim.

This rim, propagating more like a hydraulic jump or bore instead of a
surface wave, travels inward and is being pushed along by the inward radial
flow directly under the interface. The singularity that occurs when the rim
reaches the center manifests itself as a sharp jet shooting upwards.

During the formation and propagation of the rim, a mound of fluid
forms on the surface of the rising water column. We have shown through
PIV experiments that this mound is not merely the increase in ampli-
tude that is seen in converging cylindrical waves. Fluid flows up into
the mound from below, driven by the converging flow in the bulk of
the column. This flow continues to feed the singularity caused by the
rim for a short time. The authors of [1] dismissed the idea that the
tubular jet is caused by flow convergence on the grounds that such an
effect would not manifest itself after a delay. We have shown in experi-
ments and irrotational potential flow simulations that the flow convergence
affects the flow not after a delay, but from the very beginning of the process.

By experimentally obstructing and enhancing the radial flow compo-
nent, we find that the mound and rim both depend on converging flow for
their formation. The two mechanisms evolve separately, and then merge
together to create the tubular jet.

Thus we have shown that the origin of the tubular jet lies entirely in
the focussing of flow entering the tube. Therefore, the tubular jet is similar
to jets that are produced by a geometrical flow focussing of the free surface
of the liquid, as discussed in the introduction of this paper. There are
important differences however: First it is not the initial shape of the free
surface that produces the tubular jet, but the fact that the liquid has to
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enter the space confined by the tube walls. Secondly, the uniqueness of the
tubular jet stems from the merging of two initially separate events: the
creation, propagation, and collapse of the rim together with the continuous
feeding of the jet by the enhanced vertical flow at the axis of the tube.

Appendix A Gravitational and capillary waves

In Fig. 7.5 the rim overtakes the smaller capillary waves as it travels to the
center. In this Appendix we will check whether a gravitational wave of the
size of the rim would indeed travel faster than the observed capillary waves.
The surface waves are observed during the initial acceleration of the water
column, therefore the waves are subject to an acceleration besides gravity.
If we take z0 to be of order R [1] and differentiate Eq. (7.2), we find an
initial column acceleration of z̈column = (H/R)g. If we introduce the total
acceleration g(1+H/R) into the dispersion relation of a surface wave in the
deep water approximation [23], we find

c(k) =
ω

k
=

√

g

k

(

1 +
H

R

)

+
σk

ρ
, (7.7)

with k being the wavenumber and ρ the density of the liquid. However, if the
rim shape is a surface wave, it cannot be described by a simple monochro-
matic wave; it should be a superposition of many waves of varying wavenum-
ber. Its propagation speed is thus given by the group velocity cg, defined as
the derivative of temporal frequency with respect to spatial frequency,

cg(k) =
dω

dk
= c(k) +

−g/k
(
1 + H

R

)
+ σk/ρ

2c(k)
. (7.8)

From Eq. (7.8) we find that the smaller, inner waves of 2π/k = 3 mm will
have a typical velocity of order 0.6 m/s, while a surface wave of the size of
the rim (roughly 2π/k = 1 cm or larger) would travel much slower, namely
at a speed of 0.3 m/s for the depth of Fig. 7.5 (H = 200 mm). Since the rim
shape is seen to ’overtake’ the capillary waves in Fig. 7.5, it thus cannot be
a gravitational surface wave and must be propelled by the liquid flowing in
the tube.

Although Eq. (7.7) is commonly found in the context of two dimensional
waves [23], the authors of [24] shows that the dispersion relation holds also
for axisymmetric waves in the capillary regime.
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Appendix B Boundary integral method

The axisymmetric form of Green’s identity can be employed to write the
Laplace equation ∇2ϕ = 0 for the flow potential ϕ(r, z) in terms of a bound-
ary integral [17], namely

ϕ =
1

2

∫

S
r̂

(

H
∂ϕ

∂n
− ϕ

∂H

∂n

)

dS , (7.9)

where n is the normal to the surface S, and

H =
2

π

∫ π/2

0

(
(r + r̂)2 + (z − ẑ)2 − 4rr̂ cos2 θ

)−1/2
dθ .

In this way, integrating over all points (r̂, ẑ) on the boundary S, the potential
ϕ at any point (r, z) in the bulk can be obtained.

For the boundary conditions depicted by Fig. 7.13 (a), a constant radial
inflow of strength V0 is assumed to reach to depth L below the tube. At this
depth L, the boundary conditions at the bottom are satisfied by taking it
to be an image plane of the flow. The axis of symmetry has no contribution
to the integral of Eq. 7.9. Using these boundary conditions, Eq. 7.9 can be
written as

ϕ = −V0R

π

∫ L

−L

∫ π/2

0
a−1/2dθdẑ , (7.10)

with
a = (r + R)2 + (z − ẑ)2 − 4rR cos2 θ .

Integrating Eq. 7.10 with respect to ẑ and differentiating with respect to
either r and z, yields the radial vr and axial vz flow velocities at point (r, z),
namely

vr =
∂ϕ

∂r
= −V0

π
[G(r, z) + G(r,−z)] , (7.11)

with

G(r, z) = R
z − L

2r
√

b

[

r − R

r + R
Π

(

4rR

(r + R)2
,

√

4rR

b

)

+ K

(√

4rR

b

)]

,

and

vz =
∂ϕ

∂z
=

V0

π
[F (r, z) − F (r,−z)] , (7.12)

with

F (r, z) =
R√
b

K

(√

4rR

b

)

.
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Here Π(n, k) =
∫ π/2
0

(

(1 − n cos2 θ)
√

1 − k2 cos2 θ
)−1

dθ is the complete el-

liptic integral of the third kind, K(k) =
∫ π/2
0

(√
1 − k2 cos2 θ

)−1
dθ is the

complete elliptic integral of the first kind, and b = (r + R)2 + (z − L)2.
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Chapter 8

Conclusions and outlook

We have explored the controlled impact of a solid body on sand and water
and found them exemplary in the following ways:

� The impact of a solid body on water is a spectacular example of free
surface flow. Although the event is dominated by gravity, its features
express the full scope of hydrodynamics, as surface tension, viscosity,
liquid inertia, and nearly all combinations of these account for the
many different phenomena observed during the impact. Subsequently,
next to the inertially driven collapse of the surface void a broad variety
of the classical hydrodynamic instabilities can be observed during the
impact, e.g., the Kelvin-Helmholtz instability due to the air flow in
the narrowing neck or the Rayleigh-Plateau instability in the breaking
up of the jet.

� The impact onto loose and fine sand is a prime example of the plu-
riform nature of granular matter which can exhibit behavior similar
to the solid, liquid, and gas phase. On densely compacted sand the
impacting object simply arrests close to the surface –as it would when
impacting on a solid– but in loosely packed sand, the same spectac-
ular impact phenomena that are observed for liquids are recovered.
This transition can also be viewed in the context of terms common to
granular matter, such as jamming, force chains, and hysteresis.

� There are surprisingly many similarities between the impact on water
and on sand. The latter is therefore a rare example where a granular
system can be described by a continuum model, i.e., a description in
which the finite size of the grains plays no role.
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� Finally, we found both water and sand impacts to be accessible us-
ing all of the three tools available to a physicist, namely experiments,
theory, and numerical simulations: We performed high speed record-
ing and high speed particle image velocimetry laboratory experiments,
compared them to molecular dynamics and boundary integral simula-
tions, and theoretically analyzed them using a two dimensional version
of the Rayleigh equation.

The prime objective of this thesis was to study the dynamics of the free
surface in liquids and sand after the impact of a solid body. With respect
to this objective we can summarize our findings in the following qualitative
way:

After the impact of a solid body on a free surface a splash and a void
are created. Due to the hydrostatic pressure from the sides the void will
start to collapse. Close to the surface the object passes early, but the
pressure is low, therefore the collapse will be slow. Deeper, the body will
pass later, but the hydrostatic pressure is higher. The competition between
these two time intervals will cause the collapse to eventually occur near the
middle of the void. As the walls of the void hit each other at the axis of
symmetry, two jets are created. One shooting upwards and one shooting
down into the enclosed bubble.

All conclusions drawn in this thesis contribute to a lesser or larger
extent to the quantitative understanding of the series of events described
above.

The first observation is the series of events after the impact of ball on
fine and soft sand in the experiment and corresponding discrete particle
simulations. We find that also in sand these events are precisely as stated
above, including the emergence of a granular jet which driven straight into
the air. There is a remarkable similarity to the events after the impact of a
solid body on water (Chapter 2).

The second main observation is that due to the compressibility of the
sand, the shape of the cavity is more or less cylindrical, while for a similar
impact in water the cavity expands radially. This difference in cavity shape
expresses itself in a different scaling for the closure depth and time with
the Froude number, as we are able to understand in terms of our Rayleigh
collapse model (Chapters 2 and 6).
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The third finding is about the path of the object penetrating the sand.
We measured the trajectory of a ball inside the sand and found its path
to be captured extremely well by a simple Coulomb friction model, when
released from the free surface (Chapter 3).

We found that the drag in the sand is greatly reduced by a lubricating
effect of the airflow around the ball: As the pressure is reduced this effect
becomes smaller and therefore the drag increases. For constant impact
velocity this leads -at lower pressure- to altered trajectories with smaller
penetration depths. From this we could explain the existence of two
regimes: Lowering the pressure from atmospheric to several hundreds of
millibars we first observe no effect on the jet height. This is because the
drag increase mainly affects that part of the trajectory below the point
at which the cavity closes. This changes into a second regime when the
pressure is decreased below 400 millibar and the closure point starts to shift
upwards, leading to a decrease of the jet height. We showed that the above
phenomena are well captured by the Rayleigh-type hydrostatic collapse
model described previously (Chapter 4).

The fourth main observation focuses on the pinch–off of the transient
cavity in water, which we find to be not self-similar in a strict sense. For
finite Froude number, we find the power–law scaling of the neck radius with
time to have a non–universal exponent which depends on Froude. This
Froude dependence is introduced due to the deviation of the cavity from a
cylindrical shape and a second length-scale, the curvature of the void, comes
into play. The radius of curvature is found to also exhibit power-law scaling
in time, but with a different Froude dependent exponent. The difference
in Froude dependence of the exponents signals the non-universality of
the bubble pinch-off. Only in the limiting case of large Froude num-
ber, or extremely close to pinch–off, the cylindrical shape of the cavity is
recovered and the neck radius follows the purely inertial scaling (Chapter 5).

Furthermore, as the fifth point we list the perfect agreement between
boundary integral simulations and the impact of a disk in experiment. Not
only the dynamics of the free surface is faithfully reproduced, but also the
topology and magnitude of the flow surrounding the transient cavity is very
accurately captured in a one to one comparison without any free parameters.
Again, we find a simple model based on the Rayleigh equation to be suf-
ficient to describe the key characteristics of the transient cavity (Chapter 6).
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The sixth finding is that a jet can also be produced by flow focussing
in a partly immersed pipe after a pressure release. Even though the jet
produced after the impact on a free surface and the three dimensional
equivalent of a jet produced by a bubble collapsing near a solid boundary
are also induced by flow focussing. The tubular jet is unique, since in
contrast to the two other cases, it has a twofold origin: the formation
of a mound at the free surface and the collapse of a circular rim (Chapter 7).

There are many interesting aspects of impacts on liquid and on sand
that remain to be investigated. Also a number of compelling modifications
and alterations of the experimental setup are conceivable:

Surprisingly, although the surface seal mechanism discussed in Chapters
4 and 6 was already reported for liquids by Worthington as early as 1908 [1],
a systematic study of its dependence on impact parameters and the ambient
pressure is lacking. In Chapter 6 we shed some light on the onset of this
phenomenon, but a full quantitative study remains to be done.

Another appealing extension of the water impacts presented in this
thesis is to change the shape of the impactor. In a recent study [2] we
submerged a cylinder and found an unexpected and lasting influence of
capillary effects on the closure of the surface cavity. One could also think of
breaking the axial symmetry of the object. We expect that this will lead to
completely new cavity dynamics. E.g., if an ellipsoidal shape would impact
on the water surface, the collapse would first occur along its minor axis,
thereby leading to interacting transient cavities. This clearly is a new, very
intriguing and interesting situation.

Recently there has also been increased interest in studying the dynamics
of the bubble which is enclosed during the impact and which continues to
follow the disk as it descents. Similar to our observation in Chapter 6 it is
found to exhibit oscillations related to a Minneart frequency comparable to
the frontal surface of the impactor [3]. This is an interesting observation in
the context of under water noise production and asks for a more thorough
investigation.

A number of recent papers [4–6] and Chapter 5 have provided con-
siderable insight in the last stages of the purely inertial driven pinch–off.
Although the theoretical analysis and simulations of [5] and [6] seem to
indicate a universal approach towards the inertial pinch-off, this is not
yet supported by experiments. Due to the long temporal range needed,
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very accurate experiments are called for, which may be feasible in a setup
similar to the one presented in this thesis when the influence of air would
be suppressed, e.g. by evacuating the setup. Furthermore, in a theoretical
description of the pinch-off after the impact of a solid body, one should
also account for the axial translation of the minimal neck radius discussed
in Chapter 6. This feature is also observed in experiments of bubbles
detaching from a needle [7], but is absent for the break–up of a sheared
bubble presented in [5] and [6]. It would therefore be instructive to match
the asymptotic description of the pinch–off proposed by [5, 6] to the global
cavity dynamics put forward by Ducleaux et al [8] and the Chapters 2 and
6 of this thesis. In this way the axial translation of the minimal radius
might be reproduced, as well as a full description of the collapsing cavity is
obtained which captures all global and local characteristics of the collapsing
void after an impact.

In this thesis we made recordings of the externally observable phenom-
ena after the impact of a solid sphere on fine loose sand. Although this
procedure yielded a good understanding of what is going on inside the sand
(Chapters 2 and 4), in situ measurements of the closure depth in particular
could improve this understanding. Therefore measurement methods of the
cavity dynamics in the sand are called for. As an example of a feasible
method one could think of a laser sheet shining into the collapsing void
under an angle, thereby making it possible to determine the shape of the
cavity from the reflection on the cavity wall.

Then there is the thick jet, reported first by Royer et al. [9], and observed
in our own experiments for larger ball sizes. This, and liquid experiments
in radially confined systems, leads us to hypothesize that this thick jet
may be due to boundary effects. A more extensive study into these finite
container size effects may well provide the definitive answer to this question.

In this thesis we successfully studied the jet creation by flow focussing.
The observations on this mechanism will shed light on many of the jet phe-
nomena created by the same mechanism introduced in Chapter 1. These
findings will also contribute to the insight in the common nature of jetting.
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Summary

In this thesis we investigate the impact of a body on sand and water. When
a body impacts a free surface in the inertial regime the series of events is
the following: On impact material is blown away in all directions and an
impact cavity forms. Due to the hydrostatic pressure from the sides the
cavity will start to collapse. Close to the surface the body passes early, but
the pressure is low, therefore the collapse will be slow. Deeper, the body
will pass later, but the hydrostatic pressure is higher. The competition
between these two time intervals will cause the collapse to eventually occur
near the middle of the void. As the walls of the void hit each other at the
axis of symmetry, two jets are created: One is driven straight into the air
and a second jet shoots down into the enclosed bubble (Chapter 1).

Surprisingly, this series of events does not only unfold for an impact
on water, but a similar void collapse can also be observed in aerated sand,
when a steel ball impacts a very loose and fine bed of sand. In Chapter
2 we find that in experiments and discrete particle simulations a jet of
sand shoots up- and downward after the “hydrostatic” void collapse. In
addition to the experiments and the discrete particle simulations we present
a Rayleigh type continuum theory to account for the void collapse.
Due to the compressibility of the sand, the shape of the cavity is more
or less cylindrical, while for a similar impact in water the cavity expands
radially. This difference in cavity shape expresses itself in a different scaling
for the closure depth and time with the Froude number, as we are able to
understand in terms of our Rayleigh collapse model in Chapter 2 for sand
and Chapter 6 for water.

Normally, sand can support a weight through internal force chains,
a highly inhomogeneous force network between the grains. However, by
allowing air to flow through the fine sand prior to the experiment this
force-chain structure can be weakened considerably. When the air is turned
off and the bed has settled (Chapter 3) we find that the sand can no longer
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support weight. Depending on its mass a ball released from the surface
sinks into the sand up to a depth of about five diameters. The final depth
the ball reaches is found to scale linearly with its mass and its trajectory is
found to be captured extremely well by a simple Coulomb friction model.

In Chapter 4 we find that the drag in the sand is greatly reduced by a
lubricating effect of the airflow around the ball: As the pressure is reduced
this effect becomes smaller and therefore the drag increases. At lower
pressure this leads -for constant impact velocity- to altered trajectories with
smaller penetration depths. From this we can explain the existence of two
regimes: Lowering the pressure from atmospheric to several hundreds of
millibar we first observe no effect on the jet height. This is due to the drag
increase mainly affecting the trajectory below the point at which the cavity
closes. This changes into a second regime when the pressure is decreased
below 400 millibar and the closure point starts to shift upwards, leading to
a decrease of the jet height. Also these above phenomena are well captured
by the Rayleigh-type hydrostatic collapse model described previously.

As for an impact in sand, during the impact onto a water surface one
has to deal not only with the body acting on the water, but also with the
fluid acting on this body. To circumvent this coupling, an experimental
setup is presented in which we have full control over the motion of the
impacting object by attaching it to an external motor. In this way,
the response velocity of the impacting body inside the liquid is effectively
eliminated, as it now becomes a control parameter of the system (Chapter 1).

In Chapter 5 this experimental setup is used together with boundary
integral simulations to study the pinch–off of the transient cavity in water,
which we find to be not self-similar in a strict sense. For finite Froude num-
ber, we find the power–law scaling of the neck radius with time to have a
non–universal exponent which depends on Froude. This Froude dependence
is introduced due to the deviation of the cavity from a cylindrical shape and
a second length-scale, the curvature of the void, comes into play. The radius
of curvature is found to also exhibit power-law scaling in time, but with
a different Froude-dependent exponent. Only in the limiting case of large
Froude number, or extremely close to pinch–off, the cylindrical shape of
the cavity is recovered and the neck radius follows the purely inertial scaling.

The perfect agreement between the boundary integral simulations and
the controlled impact of a disk in experiment holds not only for the full
dynamics of the free surface, but also the topology and magnitude of the
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flow surrounding the transient cavity is faithfully reproduced in a one to
one comparison without any free parameters. And, we find the simple
model based on the Rayleigh equation to be sufficient to describe the key
characteristics of the transient cavity (Chapter 6).

Finally, in Chapter 7 we investigate a jet produced by flow focussing
in a partly immersed pipe after a pressure release. The “tubular jet”
is induced by flow focussing like the jet produced after the impact on a
free surface and, the three dimensional equivalent, of a jet produced by a
bubble collapsing near a solid boundary. The tubular jet is nevertheless
unique, since in contrast to the two other cases, it has a twofold origin: the
formation of a mound at the free surface and the collapse of a circular rim.
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Samenvating

In dit proefschrift onderzoeken wij de inslag van een object op zand en
water. Wanneer een object inslaat op een vloeistof oppervlak dan gebeurt
er het volgende: Op het moment van de inslag spat materiaal alle richtingen
uit en vormt zich een holte aan het oppervlak. Deze holte stort vervolgens
ineen door de hydrostatische druk die op de wanden werkt. Het object
zal een diepte vlak onder het oppervlak al snel bereiken, maar aangezien
de hydrostatische druk hier laag is voltrekt de sluiting zich hier relatief
langzaam. Voor grotere dieptes is het net andersom: het object heeft
veel tijd nodig om deze diepte te bereiken, maar de holte zal hier relatief
snel sluiten. De competitie hiertussen zorgt ervoor dat de sluiting zich
uiteindelijk nabij het midden van de holte voltrekt. Zodra de wanden van
de holte elkaar op de symmetrie-as raken ontstaan er twee stralen van
materiaal: Een straal schiet omhoog de lucht in, terwijl de tweede omlaag
de ingesloten bel inschiet (Hoofdstuk 1).

Verrassend genoeg voltrekken deze gebeurtenissen zich niet alleen bij
een inslag op water; ook wanneer we een stalen kogel op gefluidiseerd zand
laat vallen zien we dezelfde verschijnselen. In Hoofdstuk 2 vinden we zowel
in experimenten als in “molecular dynamics” simulaties een straal van zand
die omhoog en omlaag schiet na de sluiting van de holte onder invloed van
de “hydrostatische” druk in het zand. Naast experimenten en simulaties
presenteren we een continuüm theorie gebaseerd op de Rayleigh vergelijking
als beschrijving voor de sluiting van deze holte.
Dankzij de samendrukbaarheid van zand is de vorm van de holte in
het zand cilindrisch, terwijl tijdens eenzelfde inslag in water de holte
ook in radiele richting uitzet, zodat een zich naar boven toe verbre-
dende holte ontstaat. Dit verschil in vorm bëınvloedt de wijze waarop
de sluitingsdiepte en sluitingstijd in water en zand afhangen van het
Froude getal. Het verschil in de schaling tussen beide kan verklaard worden
met de Rayleigh theorie (Hoofdstuk 2 voor zand en Hoofdstuk 6 voor water).
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Normaliter kan zand gewicht dragen door een interne structuur van
“force chains”, een hoogst inhomogeen netwerk van krachten tussen de
zandkorrels. Echter, wanneer fijn zand voorafgaand aan een meting
gefluidiseerd wordt en daarna weer tot rust komt, dan zijn deze force chains
sterk verzwakt. In Hoofdstuk 3 vinden we dat de zo behandelde zandlaag
dan niet langer in staat is om enig gewicht te dragen. Een kogel die wordt
losgelaten aan het oppervlak dringt tot wel vijf keer zijn diameter in het
zand door. De uiteindelijke diepte die de kogel bereikt is recht evenredig
met zijn massa en de baan van de kogel wordt bijzonder goed beschreven
door een op Coulomb wrijving gebaseerd model.

In Hoofdstuk 4 vinden we dat de wrijving die de kogel in het zand
ondervindt sterk verkleind wordt door de invloed van de luchtstroom rond
de kogel. Bij lagere luchtdrukken leidt dit -voor een constante inslag
snelheid- tot een verandering van de baan van de kogel en daardoor tot
een kleinere doordring diepte. Hierdoor ontstaan twee regimes: Als we de
luchtdruk verlagen van atmosferisch naar enkele honderden millibar zien we
geen effect in de uiteindelijke hoogte van de zandstraal. Dit komt doordat
de toegenomen wrijving de baan van de kogel voornamelijk bëınvloed nadat
de kogel de diepte van de sluiting gepasseerd is. Dit verandert in het tweede
regime (beneden de 400 millibar) waar de sluitingdiepte omhoog verschuift,
hetgeen leidt tot een afname van de hoogte van de zandstraal. Ook dit
verschijnsel wordt beschreven door het Rayleigh model gebaseerd op een
hydrostatische sluiting.

Net als bij een inslag in zand, moet men gedurende een inslag in water
niet alleen rekening houden met de invloed van het object op het water,
maar ook met het effect dat de vloeistof op het object heeft. Om deze
koppeling te voorkomen hebben wij een experimentele opstelling ontwikkeld
waarmee we door het gebruik van een externe lineaire motor volledige
controle over de beweging van het object verkrijgen. Op deze manier is de
snelheid van het object niet langer een respons van het systeem, maar een
controle parameter (Hoofdstuk 1).

In Hoofdstuk 5 gebruiken we deze opstelling samen met zogenaamde
“boundary integral” simulaties om het allerlaatste stadium voor de sluiting
van de holte te bestuderen, ook wel insnoering gemoemd. In andere syste-
men, zoals de insnoering die plaats vindt vlak voordat een druppel van een
waterkraan valt, blijkt de vorm van de insnoering vaak onafhankelijk te zijn
van de schaal waarop men het verschijnsel bekijkt. Wij hebben ontdekt dat
deze eigenschap, die bekend staat als ‘self-similarity’, niet voor ons systeem
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opgaat. Dit uit zich in het feit dat de exponent van de “power-law” schaling
van de straal van de insoering met de tijd niet universeel is: deze exponent
hangt van het Froude getal af. Dit komt doordat de holte niet puur
cilindrische van vorm is, waardoor een tweede lengte schaal, de kromming
van de holte, belangrijk wordt. Ook deze kromming vertoont “power-law”
schaling met de tijd, echter met een andere exponent, die eveneens van
het Froude getal afhankelijk is. Slechts voor zeer grote inslagsnelheden, of
extreem dicht bij de pinch-off, is de holte lokaal cilindrisch en schaalt de
straal van de insnoering zoals door de Rayleigh vergelijking voorspeld is.

De perfecte overeenkomst tussen de “boundary integral” simulaties
en experimenten met de gecontroleerde impact van een schijf geldt niet
alleen voor de vorm van de holte. Een directe vergelijking van de stroming
rondom de holte, zonder gebruik te maken van vrije parameters, geeft een
identiek beeld: zowel de topologie als de grootte van de stroming is in
beide gevallen volledig gelijk. Alle belangrijke aspecten van de vorm van
de zich sluitende holte worden daarnaast perfect gereproduceerd door het
analytische Rayleigh model (Hoofdstuk 6).

Tenslotte bekijken we in Hoofdstuk 7 de oorsprong van de waterstraaljet
die ontstaat na het openen van een deels in water ondergedompelde pijp.
Deze “tubular jet” wordt net als bij de inslag van een object geproduceerd
door een mechanisme waarbij de stroming in de vloeistof alle energie focust
op de symmetrie as van het systeem. Toch is de tubular jet uniek, aangezien
in tegenstelling tot het vorige geval de tubular jet een tweevoudige oorsprong
heeft: Ten eerste ontstaat er een cirkelvormige golf op het opervlak die
vervolgens sluit. Dit zou slechts een kleine jet opleveren, ware het niet dat
de radiele instroom van de vloeistof, de jet blijft voeden. Het samenspel
tussen deze verschijnselen creëert de waargenomen krachtige tubular jet.
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